

A Cost Efficient Approach to Rigless P&A for Future Projects

Amalie Frafjord Andersen & Sara Marlen Kolstø

Agenda

01	Who we are
02	Scope of thesis & rigless P&A
03	Cases
04	Cost analysis
05	Result & Conclusion

Internal

Who Are We?

- Amalie Frafjord Andersen & Sara Marlen Kolstø
- Graduated from UiS in 2025 with a Master degree in Industrial Economy
- Graduates in Aker BP

Scope of Thesis

To what extent can rigless technologies offer a safer, cost-efficient, and lower-emission approach to P&A of platform wells in compliance with regulatory requirements?

- Cases:
 - Base Case: Conventional Drilling Rig (XLE jack-up rig)
 - Case 1: Modular Drilling Rigs (MDR)
 - Case 2: New rigless technologies
- Methodology:
 - Monte Carlo simulations for cost and time (Base Case & Cases 1 & 2)

PS: This Master Thesis is submitted to the University in Stavanger under supervision from Aker BP.

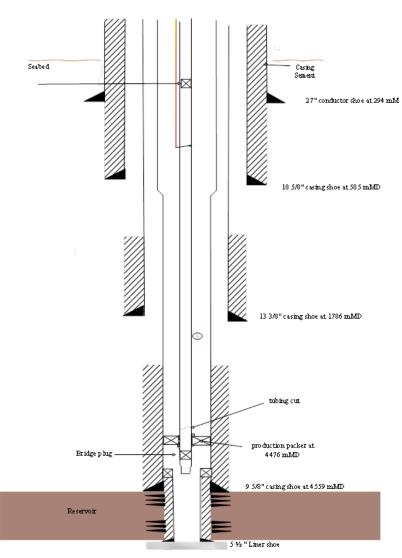
What is Rigless P&A?

Modular Drilling Rig

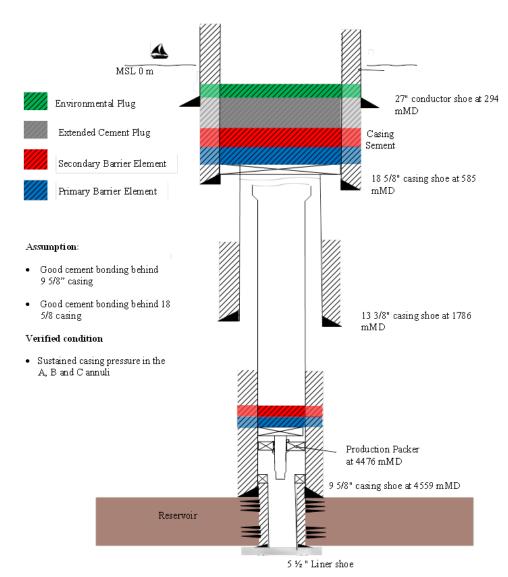
Flexible interventions

Cost-effective

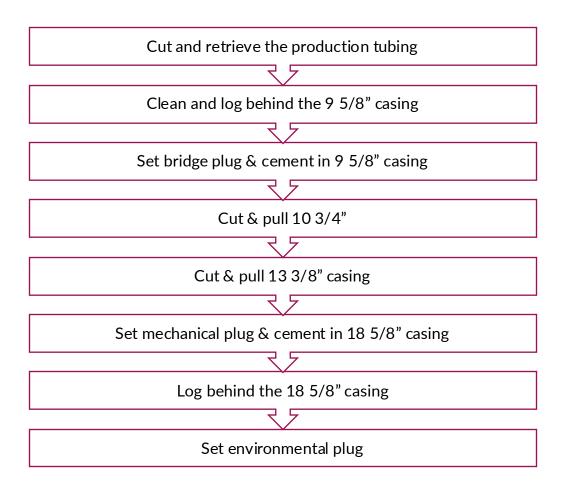
• In this study, rigless P&A is defined as a set of technologies that enable well abandonment without the use of conventional drilling rigs

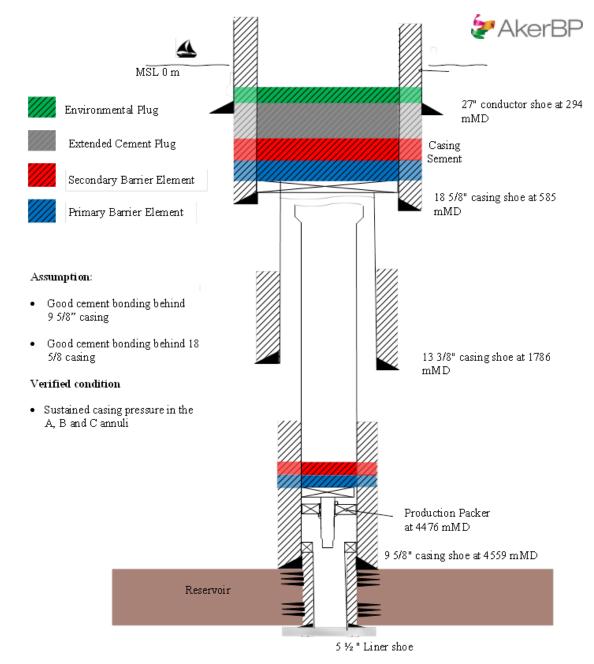

Cases

• P&A Phase 2


CASE	APPROACH	TECHNOLOGY USED	OPERATIONAL STEPS
Base Case	Rig-based	XLE rig	Full rig-based P&A with drill pipe operations
Case 1: MDR	Rigless	Modular Drilling Rig	Full abandonment with MDR including cutting, plugging, and barrier verification
Case 2: New Technology	Rigless	Wireline, Dual Logging, Axter System, dSolve, Bismuth, MDR	Dual logging, barrier installation through tubing using a wireline, then MDR

The Well Design Used for All the Cases

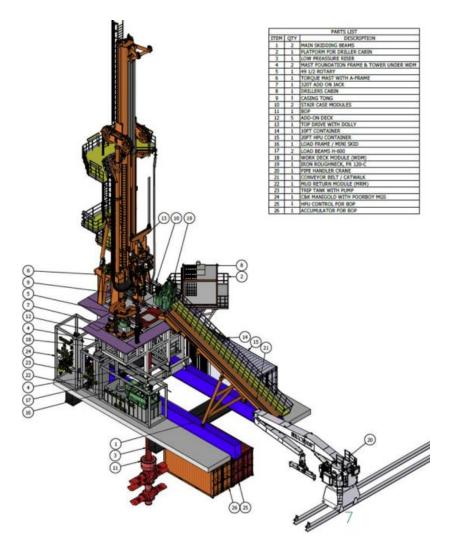

P&A phase 1: Before permanent P&A



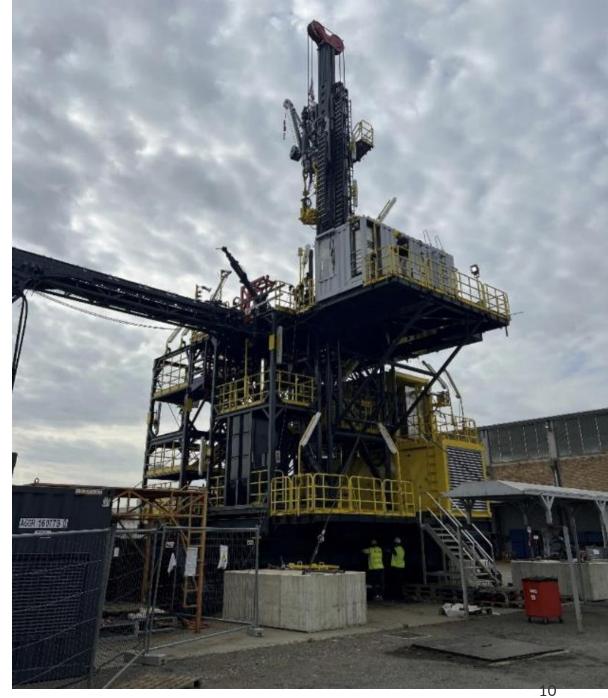
P&A phase 2: Permanent P&A

Internal

Base Case: Procedure



Case 1: Modular drilling Rig (MDR)


- What is an MDR?
- Four fundamental functions:
 - 1. Tubing pulling operations
 - 2. Structural support for vertical operations
 - 3. Automated tubular handling and hoisting
 - 4. Circulation and pressure control systems

Illustrating an MDR from Odfjell Technology

Case 1: Procedure

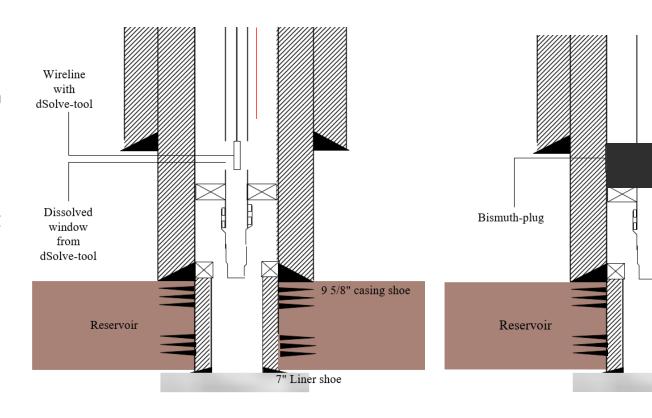
- Perform the same steps as Base Case
- Challenge: Slower
- Advantage: Lower daily operational cost
- More economical?

Archer MDR

Case 2: New Rigless Technologies

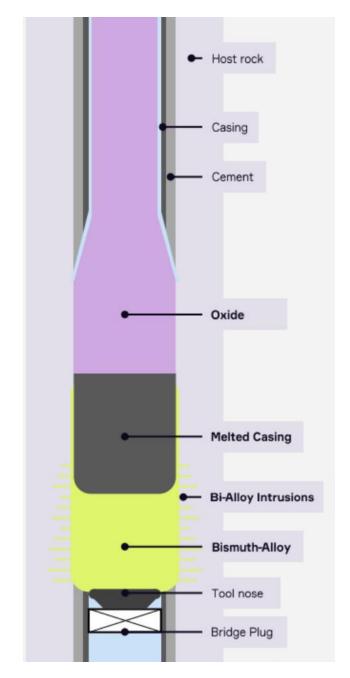
• Case 2A:

• Case 2B:



-9 5/8" casing shoe

7" Liner shoe


Case 2A: Procedure

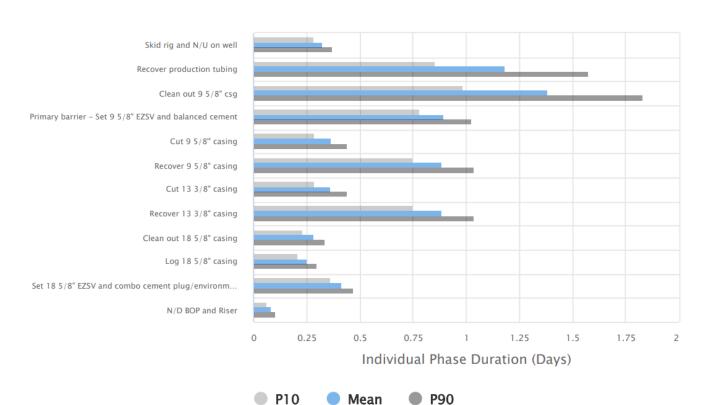
- Reservoir Barrier:
 - Dual Logging
 - Remove control lines with
 Axter System
 - DSolve tool dissolve
 specific sections of tubing
 - Bismuth Plug
- Upper Barrier & Environmental plug:
 - o MDR

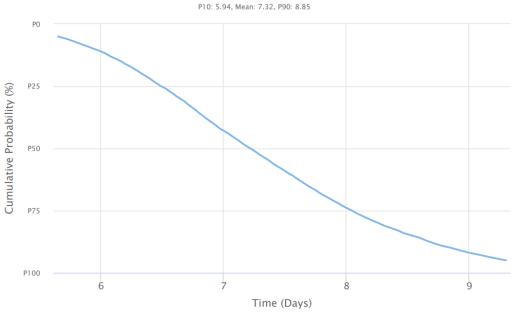
Case 2B: Procedure

- Reservoir Barrier
 - RockSolid
 - Thermite-based exothermic reaction
 - Expand from within the tubing through the 9 5/8" casing
- Upper Barrier & Environmental plug:
 - MDR

Cost Analysis - Input

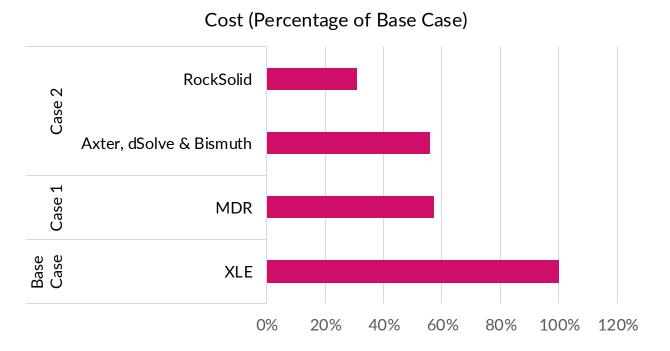
- Methodology
 - Monte Carlo simulation
- Data Collection
 - Time
 - Tripping, racking, POOH
 - Costs
 - Daily operational cost of XLE rig, MDR and wireline
 - Confidential, uses % as cost relative to base case
- Input data provided by Aker BP and vendors




Phase/Event Name	Distribution Type	Variable Unit
Skid rig and N/U on well		
Skid rig	Pert	Hours
Secure rig and prepare slot	Pert	Hours
Land HP and BOP riser on well	Pert	Hours
Land Bell nipple and diverter	Pert	Hours
Fill riser	Pert	Hours
Perform a connector test	Pert	Hours
Recover production tubing		
Pre job meeting	Spike	Hours
M/U Spear BHA	Pert	Hours
Engage Spear	Pert	Hours
Cycle open shallow e-Red valves	Pert	Hours
Pull TH free	Uniform	Hours
Circulate and condition mud	Pert	Hours
Flow check	Spike	Hours
POOH	Pert	Trip(Mt/Hr)
L/D Spear BHA	Pert	Hours
R/U casing equipment	Pert	Hours
Continue to pull and R/B tubing	Pert	Trip(Mt/Hr)
R/D casing handling equipment	Pert	Hours
Clean and clear rig floor	Spike	Hours
Clean out 9 5/8" csg.	Harris	110-01-2
Pre job meeting	Spike	Hours
M/U Cleanout BHA	Pert	Hours
RIH to tubing stump	Pert	Trip(Mt/Hr)
Clean well	Pert	Hours
Flow check	Spike	Hours
POOH w/BHA and log	Pert	Trip(Mt/Hr)
L/D Cleanout BHA	Spike	Hours
Clean and clear rig floor	Spike	Hours
Primary barrier - Set 9 5/8" EZSV and balanced cement	эрке	riours
	e-il-	Hours
Pre job meeting	Spike	
MU EZSV	Pert	Hours
RIH with EZSV	Pert	Trip(Mt/Hr)
Set, tag and test EZSV	Pert	Hours
Set balanced cement plug	Pert	Hours
Pull to TOC and circulate	Pert	Hours
POOH	Pert	Trip(Mt/Hr)
LD EZSV RT	Pert	Hours
Clean and clear rig floor	Spike	Hours
Cut 9 5/8" casing		
Pre job meeting	Spike	Hours
M/U cut BHA	Pert	Hours
RIH	Pert	Trip(Mt/Hr)
Circulate to condition mud	Pert	Hours
Cut 9 5/8" casing below 18 5/8" easing shoe	Pert	Hours
Circulate behind 9 5/8* casing	Pert	Hours
POOH with cut assemblies	Pert	Trip(Mt/Hr)
LD out assemblies	Pert	Hours

Output From The Simulation

Base case



Results: Overview

DISCLAIMER: This is a static review of single well assuming technology readiness and is not including platform specific costs, tool run charges for new technology and other limitations (see next slide)

Case	Mean P&A Phase 2 Duration (days)	Mean Cost (% compared to Base Case)
Base Case: XLE	7,32	100 %
Case 1: MDR	10,93 (↑3,61)	57% (↓43%)
Case 2A: Axter, dSolve, Bismuth	12,45 (↑5,13)	56%(\\44%)
Case 2B: RockSolid	6,07 (↓1,25)	31% (↓69%)

Break- even cost: $RigCost_{MDR} = \frac{RigCost_{XLE} \cdot OperationTime_{XLE}}{OperationTime_{MDR}} = \frac{1 \cdot 7.32 \ days}{10.93 \ days} = 0.67$

Limitations & Indirect Costs

Charges for new technology

- Tool run charges
- Investments

Platform specific costs

- Conditions of platform
- Number of wells
- Platform utilities
- Deck space
- Crane conditions

Operational Risks

- High Risk Scenarios
- Multiple SOIs
- Well conditions deviating from ideal case in this presentation

Logistical challenges

- Crew Capacity
- WOW/NPT

Conclusion

Simulations indicate that rigless technologies perform P&A operations at lower cost compared to conventional drilling rigs

Compared to Base Case:

Case 1 had 43 % lower cost Case 2A had 44 % lower cost Case 2B had 69 % lower cost DISCLAIMER: This is a static review of single well assuming technology readiness and is not including platform specific costs, tool run charges for new technology and other limitations.

The cost estimates does not include the expenses associated with new technologies

represent the maximum investment one could make while remaining more costeffective than a conventional rig-based approach

Internal

