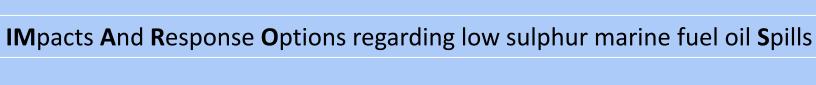
imarós,

Beredskapsforum

Silje Berger 29.4.2025



imares, Main objectives

- Improve understanding of oil spill behaviour of LSFOs, and consequently decision making on all levels of oil spill response operations
- Improve capacities of mechanical recovery and shoreline response

Imares

Timeline for the project

Project partners

Background

- Previous tests and observations
- Results and recommendations from IMAROS project and incidents

WP 1 Project management and cross-cutting

Lead:Norwegian Coastal AdministrationParticipants:All partnersDuration:Month 1-24Objectives:

- Project management
- Crosscutting activities
- Communication
- Synthesis of results from all WPs

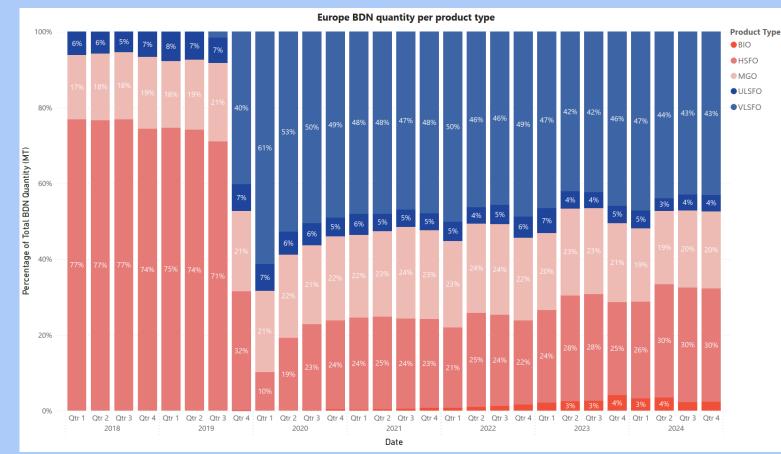
WP 2 Trends and samples

Lead:	Rijkswaterstaat
Participants:	All partners
Duration:	Month 1-18
Objectives:	

- Update knowledge on ship fuels in European waters
- Collect representative oil samples

Oil samples

- ~ 60 different oil companies, bunker suppliers and ports contacted for samples
- Residual LSFOs different blends
- 15 "small" samples for WP3 chemical characterization
- 3 "large" samples for response testing 2 VLSFO, 1 ULSFO



Bunker delivery

Graph reproduced from Veritas Petroleum Services data (VPS PortStats)

WP 3 Characterization and impacts

Lead: Participants:

CEDRE Royal Belgian Institute of Natural Sciences, Rijkswaterstaat

Month 6-22

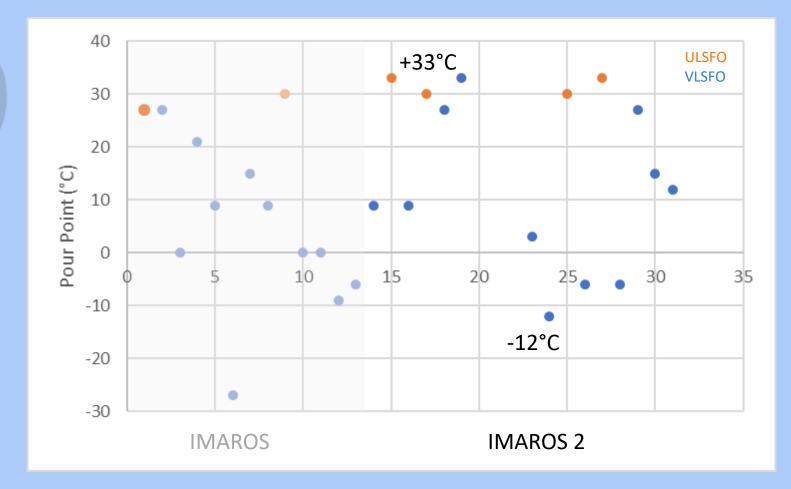
Duration: Objectives:

- Screening and characterisation of samples
- Improve understanding of properties of LSFO affecting recovery and shoreline response, including wax-components and interfacial tension
- Improve understanding of behaviour of LSFO in marine and fresh waters
- Improve understanding of behaviour and response options in the Mediterranean

K Y S T V E R K E T

Pour Point

Small samples



Pour Point

Small samples

WP 4 Mechanical recovery

Lead:	Norwegian Coastal Administration
Participants:	All partners
Duration:	Month 2-22

- Objectives:
 - Test applicability of different mechanical recovery systems to on the of LSFOs with challenging behaviour
 - Promote innovation and improvement of existing equipment

WP 4 Mechanical recovery

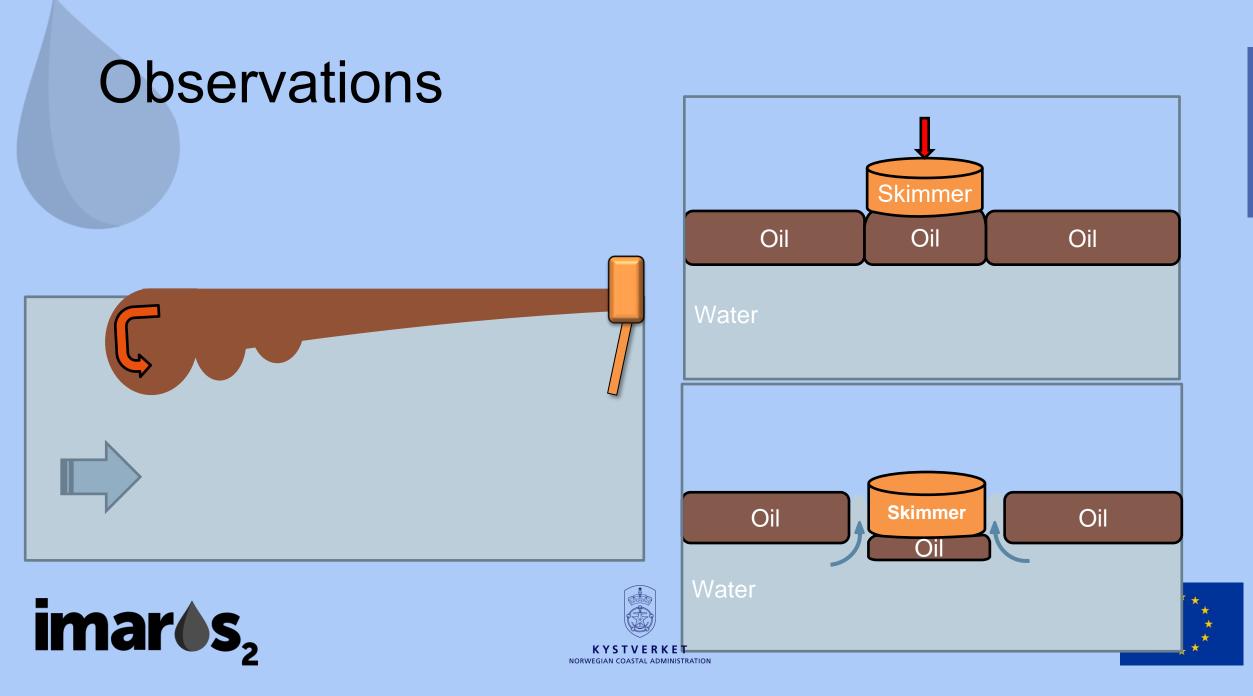
- Producer involvement conference, hosted by Swedish Coast Guard
- Invitation to participate in the project: – applications from 11 companies

imares,

- Process with all project partners to select the most promising approaches:
 - 3 concepts for testing in Horten (2 trail periods)
 - 2 concepts for testing in Kotka (ice conditions)
 - 1 concept for testing in Horten with modified test procedure
- Measurement of exposure to workers (STAMI)

Oil samples

Imaros 2 ID	Oil type	Viscosity of fresh oil, temp sweep (cP)		Viscosity of emulsion at 10°C	Pour point of fresh oil (with
		10°C	50°C	(10s ⁻¹)	max. and min.)
IM-27	VLSFO	23104	282	9998 – 42548	21 (9, 21)
IM-28	VLSFO	36277	110	21386 – 54734	30 (21, 27)
IM-29	ULSFO	932	9.6	12173 – 18492	21 (15, 24)


Observations on oil behavior

VLSFO IM-28

ULSFO IM-29

Oil in Ice tests - Kotka, Finland

- Testing of oil skimmers in winter conditions
- Recovery of LSFO from broken ice
- Test conditions mimicking solid ice field that has a fairway broken in the sea
 - Air temperature: -2,0°C
 - Water temperature: 0°C

Oil in Ice tests - Kotka, Finland

Trial period 3

- Lessons learned
- Ongoing improvements by the equipment manufacturers
- New trails from April June

CEDRE

Month 7-23

Lead: Participants:

CEDRE, Norwegian Coastal Administration, Transport Malta

Duration: Objectives:

- Identify possible gaps and solutions within shoreline clean-up methods and/or equipment
- Give operational recommendation by categorizing the different types of LSFO and associated response options
- Study the potential toxicity of LSFO absorbed in rocks on marine organisms

T5.1 - Rock cleaning

T5.2 - Efficiency of cleaning agents

T5.3 - Natural recovery and rock colinisation by biota

T5.1 - Rock cleaning

Assessment of oil adhesion on granite tiles and of efficiency of cleaning with high pressure water washer

T5.2 - Efficiency of cleaning agents

Cleaning agent added to polluted tiles and processed with cleaning procedure

T5.3 - Natural recovery and rock colinisation by biota

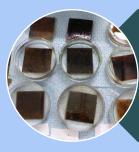
Field tests over one year: Oil remobilisation, chemical composition and tiles recolonisation



T5.4 - Interaction with sediments

T5.5 - Observations on practical cleaning techniques

T5.6 - Release and toxicity of oil absorbed in rocks


T5.4 - Interaction with sediments

Shoreline test bench: Assessment of oil adhesion / penetration on sand, rock, cobble

T5.5 - Observations on practical cleaning techniques

Assessment of different practical cleaning techniques (manual removal, use of sorbents in « field boxes »)

T5.6 - Release and toxicity of oil absorbed in rocks

Tests on algae and copepods. Culture media: water in contact with polluted tiles

Testing of practical cleaning techniques

Shoreline clean-up simulation container

Adjustable angle of the shoreline

Artificial shoreline

VLSFO IM-28, 15 °C

KYSTVERKET NORWEGIAN COASTAL ADMINISTRATION

Thank you for your attention

Visit IMAROS 2:

https://civil-protection-knowledge-network.europa.eu/projects/imaros-2

Acknowledgements: LAMOR, DESMI, VIKOMA and NEW NAVAL

The IMAROS 2 project is co-funded by the EU under the call UCPM-2023-KAPP, project number 101140015

