HYDROCARBON RELEASE PREVENTION — OUR COLLECTIVE CHALLENGE

HUGH D BENNETT - CO-CHAIR HYDROCARBON RELEASE PREVENTION WORKGROUP

PRESENTATION AGENDA

WHAT IS STEP CHANGE?

THE UK CHALLENGE AND WHAT HAS WORKED WELL

WHAT UNDERPINNED THE SUCCESS?

WHY HAS THERE BEEN AN INCREASE IN RECENT REPORTS?

JOINED UP THINKING

S.A.D.I.E. SAFETY ALERT DATABASE INFORMATION EXCHANGE

CATEGORISATION COMPARISON BETWEEN NORWAY AND UK

WHAT IS STEP CHANGE?

STEP CHANGE IS A "NOT FOR PROFIT" ORGANISATION

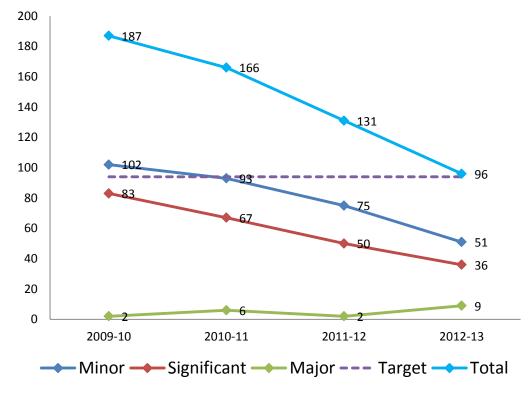
STEP CHANGE IN SAFETY WAS FOUNDED IN 1997 BY THE OIL AND GAS INDUSTRY TRADE ASSOCIATIONS WITH THE AIM OF REDUCING ALL THE UK OFFSHORE OIL AND GAS INDUSTRY INJURY RATE BY 50%.

BY 2002 A NEW VISION WAS CREATED: "THE UK IS THE SAFEST PLACE TO WORK IN THE WORLDWIDE OIL AND GAS INDUSTRY

MEMBERSHIP OF STEP CHANGE NOW INCLUDES THE UK HEALTH AND SAFETY EXECUTIVE AND THE TRADE UNIONS.

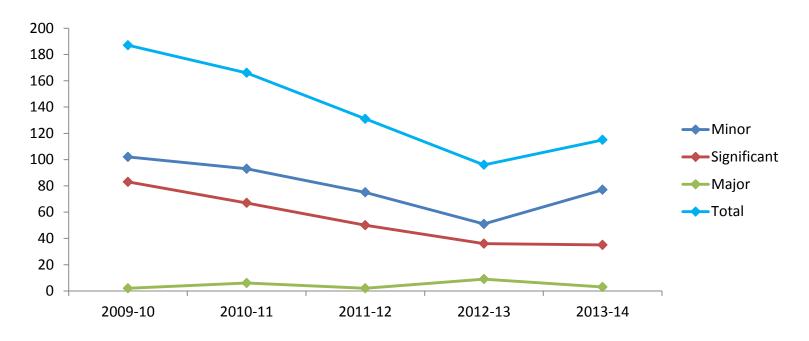
IT IS THIS BROAD STAKEHOLDER BASE THAT MAKES THE STEP CHANGE GROUP EFFECTIVE ACROSS THE WHOLE INDUSTRY.

STEP CHANGE HAS MEMBERSHIP ACROSS 128 COMPANIES IN THE UK

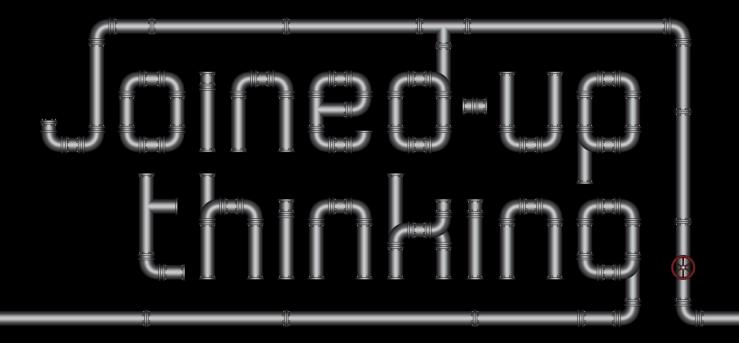

IN 2010, WE SET OURSELVES A TARGET OF REDUCING THE NUMBER OF HYDROCARBON RELEASES BY 50% IN 3 YEARS

WHAT'S WORKED WELL?

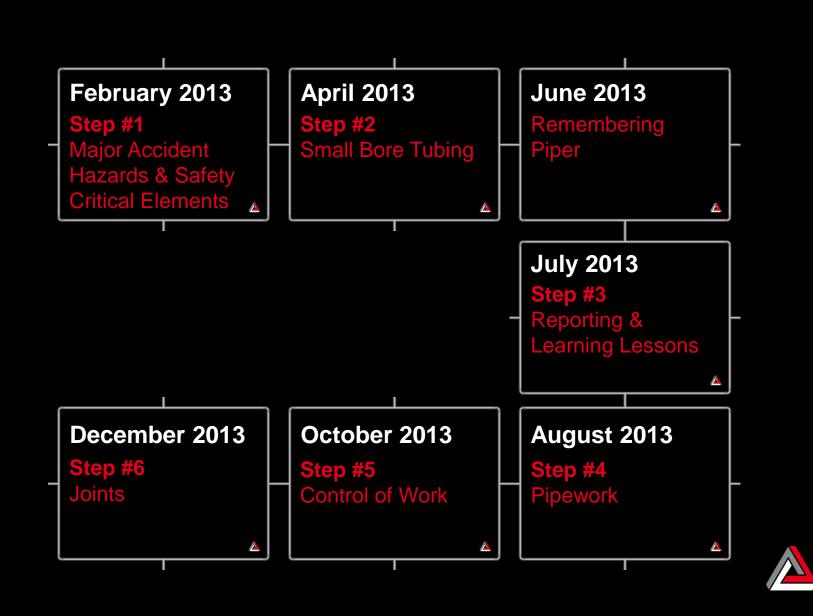
49% reduction in HCRs in 3 years (2010-2013)


WHAT UNDERPINNED OUR SUCCESS?

- The Health and Safety Executive (HSE) HCRs Reduction focus and intervention policy
- HCR Plans
- Practical workforce engagement tools
- Joined up Thinking
- Cross-industry sharing


WHY THE INCREASE?

INDUSTRY PERFORMANCE


severity	2012-13	2013-14
Major	9	3
Significant	36	35
Minor	51	77
Total	96	115

WORKING TOGETHER TO PREVENT HYDROCARBON RELEASES

SADIE

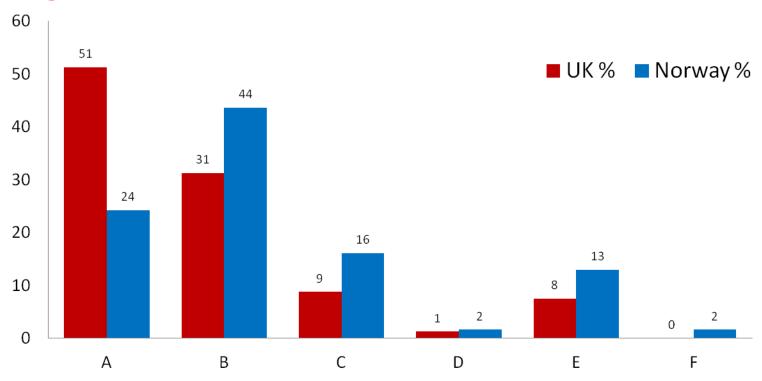
Safety

Alert

Database

Information

Exchange


LEAK CATEGORISATION (Norway)

- A. Technical degradation of system
- B. Human intervention introducing delayed release
- C. Human intervention causing immediate release
- D. Process disturbance
- E. Inherent design errors
- F. External events

Detailed categories		
Code	<u>Description</u>	
A1	Degradation of valve sealing	
A2	Degradation of flange gasket	
A3	Loss of bolt tensioning	
A4	Fatigue	
A5	Internal corrosion	
A6	External corrosion	
A7	Erosion	
A8	Other	
A9	Degredation of permanent or temporary hoses	
B1	Incorrect blinding/isolation	
B2	Incorrect fitting of flanges or bolts during	
	maintenance	
B3	Valve(s) in incorrect position after maintenance	
B4	Erroneous choice of installations of sealing device	
B5	Maloperation of valve(s) during manual	
	operations	
B6	Maloperation of temporary hoses	
B7	Incorrect installation of small bore fittings	
C1	Break-down of isolation system during	
	maintenance (technical)	
C2	Maloperation of valve(s) during manual operation	
C3	Work on wrong equipment (not known to be	
D4	pressurised)	
D1	Overpressure	
D2	Overflow/over filling	
E1	Design related failures	
F1	Impact from falling object	
F2	Impact from bumping/collision	

UK VS. NORWAY

- A. Technical degradation of system
- B. Human intervention introducing delayed release
- C. Human intervention causing immediate release
- D. Process disturbance
- E. Inherent design errors
- F. External events

FOLLOW US

www.stepchangeinsafety.net

http://www.facebook.com/stepchangeinsafety

