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1 PREFACE 

1.1 The objective of the report  
Exploration for petroleum resources is increasing in the Barents Sea. Optimism is rising due 

to recent hydrocarbon discoveries on Skrugard, Havis and Norvarg and the agreement with 

Russia regarding the border at sea. There will potentially be all year activity in the Norwegian 

sector of the Barents Sea.  

Norwegian petroleum regulations require that personnel on a facility can be evacuated quickly 

and efficiently to a safe area at all times, Activity Regulation § 77 d) [11], and in all weather 

conditions, Facilities Regulation § 44 [12]. The objective of this thesis is to examine 

limitations and critical issues for emergency preparedness in the Barents Sea. 

The following hypothesis will be investigated: All year petroleum activity is not possible in 

the Barents Sea with regard to emergency preparedness unless sufficient attention is given to 

critical factors influencing evacuation and rescue. 

1.2 Major contents of the report 
The report considers the Barents Sea area from the Norwegian coast to Bjørnøya in the north 

and the border with Russia in the east. Background information on the climate conditions in 

the Norwegian sector of the Barents Sea and special features of the area are presented. Use of 

helicopters, emergency response vessels, fast recovery daughter craft, man overboard boats, 

lifeboats and survival suits for evacuation and rescue purposes are discussed in order to 

identify critical issues with regard to successful and sound operations. 

1.3 Disclaimer 
Although being an employee of the Norwegian Petroleum Safety Authority, views expressed 

in this thesis are not to be regarded as the view of the authorities. All views and 

interpretations of regulations expressed in this thesis are those of the author. 

Notes:  

1. The use of [#] in this report indicates a document listed in the reference list in section 8. 

2. The use of italics indicates that the text is quoted from the referenced document. 
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3 ABSTRACT 

3.1 A briefing on the objective of the work  
All year petroleum activity is not possible in the Barents Sea with regard to emergency 

preparedness unless sufficient attention is given to critical factors influencing evacuation and 

rescue. 

The objective of this thesis is to examine conditions relevant to evacuation and rescue of 

personnel from facilities operating in the Barents Sea. We are concerned with the boundary 

between situations that we can manage within emergency preparedness, procedures, 

technology and the situations where we may not be able to expect success. Certain situations 

may not be covered by emergency preparedness procedures due to conscious decisions that 

are made in the process of risk and emergency preparedness analysis, the selection of 

acceptance criteria and situations of hazard and accident. Limiting factors can be identified 

within the areas of human, technology, operational or organisational perspectives. Experts are 

normally  aware  of  the  limitations  that  are  “designed  into  the  system”.  Limitations should be 

dealt with openly and honestly within a risk management regime. 

3.2 Information about the limitations of the report  
The report considers the Norwegian sector of the Barents Sea north of the Norwegian 

mainland, south of Bjørnøya and extending eastwards towards the Norwegian/Russian border 

that came into effect in 2011. This corresponds roughly to the area that is open for exploration 

and exploitation of petroleum resources in the Norwegian sector of the Barents Sea. 

3.3 A briefing of the methods that are used  
Emergency preparedness for the petroleum activity in the Barents Sea is examined based on: 

 Risk management theory: Risk Analysis, ALARP, Emergency Preparedness Analysis 

and Defined Situations of Hazard and Accident (DSHA). 

 Examination of literature pertaining to emergency preparedness and survival in cold 

climates and remote areas.  

 Performing analysis of barriers using event trees, bow ties and networks to identify 

critical issues related to successful emergency preparedness. 

 Examination of information gathered from relevant accident investigation reports 

related to maritime and aviation accidents. 



 8 

 Performing interviews to gather experience from operations in the Barents Sea and to 

triangulate the results of analysis and calculations.  

 Performing example calculations relevant to evacuation and rescue.  

3.4 The most important results  
Every effort should be made to prevent the need for emergency preparedness resources and if 

required, evacuation, survival and rescue equipment should perform satisfactorily in order to 

eliminate or reduce injury and loss of life. Weather conditions in the Barents Sea are such that 

certain critical technical solutions may not be appropriate in some circumstances. Immersions 

suits are critical to survival of persons in the sea and should be used with caution outside of 

the design envelope. Helicopters are equipped with floatation systems that may be insufficient 

in sea states that are currently accepted for transport flights. It can be difficult to rescue 

persons from lifeboats in harsh weather and this may pose an extra threat to survival if ice 

accretion threatens the stability of the vessels. The useful operational window of equipment 

and a person’s  ability  to  use  the  equipment  should  be known and activities should be planned 

within this envelope. 

3.5 Major findings and conclusions  
The lack of infrastructure and long distances combined with the climatic conditions of the 

Barents Sea lead to challenges that require special consideration and management. 

Performance requirements related to medical evacuation of ill or injured persons will be 

challenged as activity moves further north and away from mainland Norway. Compensating 

measures will need to be implemented to ensure that the need for emergency preparedness 

resources is reduced at the same time as improving access to these resources as the need 

cannot be eliminated.  

As work has progressed on this thesis, it has become increasingly clear that it is insufficient to 

only consider the traditional regimes of emergency preparedness within the area of evacuation 

and rescue. In the case of an accident involving many injured persons, there is a challenge 

with regard to the capacity of the public health services in Northern Norway. This is further 

aggravated by large distances and limited resources for transportation. In order to prevent the 

loss of life, the availability of emergency health services onshore must be considered when 

evaluating the total acceptability of petroleum operations in the Barents Sea. 
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Increased awareness of the physical and psychological limitations of a person and the 

limitations of evacuation, survival and rescue equipment is required combined with improved 

planning of activities based on this knowledge.  

Departure criteria for helicopter transport should be developed to ensure a reasonable prospect 

of rescue under the prevailing conditions during the flight. 

Ice accretion remains an issue that requires attention particularly for emergency response 

vessels, lifeboats, fast recovery daughter craft and man overboard boats.  

Emergency response vessels should be designed to retrieve lifeboats from the sea in a broad 

range of sea conditions and as far as reasonably practicable be able to perform this operation 

close to the limit of the conditions that can be anticipated. 

Improved access to medical assistance onboard the facility is required due to distance and 

unpredictable weather conditions. Improved health requirements and screening of personnel 

who will work on facilities in the Barents Sea is recommended.  

All year activity everywhere in the Barents Sea is only possible if comprehensive risk 

analysis is performed, the ALARP process applied and necessary measures are put in place to 

compensate for the specific challenges of the area. 

3.6 Recommendations for further work 
Research helicopter ditching and accidents in the sea to identify critical issues related to 

escape and survival in order to improve helicopter underwater escape training. 

Research voluntary safety training involving developing tolerance to cold water and dealing 

with a stressful environment during escape from a helicopter and subsequent survival in the 

sea. Evaluate the benefits compared to current helicopter underwater escape training.  

Develop a decision support tool based on a comprehensive set of departure criteria for 

helicopter flights. 

Develop a civilian helicopter in flight refuelling system (HIFR) suited for use in the Arctic. 

Develop suitable methods for evacuation in cold climates where sea conditions can vary from 

calm to violent storm or even hurricane in open water conditions to many varieties of ice 

types and cover. 
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4 INTRODUCTION 
There is an assumption that a large part of the world's undiscovered petroleum resources are 

located in the Arctic. This has caused increasing interest in the High North. The Barents Sea 

in particular is one of the areas where it is expected to find large petroleum resources [27 

p12], and petroleum related activity is increasing in the Barents Sea. Optimism is rising due to 

recent hydrocarbon discoveries on Skrugard, Havis and Norvarg, the agreement reached for 

the border with Russia, the planned start of production on Goliat 2013 and the announcement 

of the 22nd concession round in Norway. There will potentially be all year activities (year 

round exploration activity & permanent production installations: subsea, floating or fixed) in 

the Norwegian sector of the Barents Sea. 

4.1 Problem 
Hypothesis: All year petroleum activity is not possible everywhere in the Barents Sea with 

regard to emergency preparedness unless sufficient attention is given to critical factors 

influencing evacuation and rescue. 

What critical factors influence emergency preparedness, rescue operations and survival in the 

Barents Sea? Can these critical factors be managed effectively? The critical factors and 

limitations are evaluated in a human, technology, operational and organisational perspective. 

Humans: A person can limit successful emergency preparedness operations because they are 

not able to use the equipment properly (lack of competence). There may be reasons 

(individual, mental and physical strength) that make them unable to use the equipment or act 

correctly under prevailing conditions in an emergency situation. Human limitation is of 

particular concern in the case of cold weather and winter darkness. 

Technology: Emergency equipment has inherent technical limitations. Safe and successful use 

of the equipment cannot be guaranteed if used outside the design envelope. 

Operations: Operational measures and procedures are often defined in order to increase 

safety. If these are violated or the assumptions are neglected, they may no longer provide the 

intended protection. 

Organisation: The organisation sets the framework within which humans (H) operate (O) 

equipment (T). The decisions made within an organisation have a direct impact on the 

performance and safety level of the organisation. For example, the organisation, during risk 
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management processes, may choose not to have emergency preparedness for rare events. This 

is a conscious decision that defines a limiting condition for performance in given situations. 

4.2 Reasons for choice of problem 
The objective of this thesis is to examine conditions relevant to evacuation and rescue of 

personnel from facilities operating in the Barents Sea. The boundary between situations that 

can be managed within emergency preparedness procedures and technology and the situations 

where failure may be expected are of interest when making decisions to perform an operation. 

Certain situations are not covered by emergency preparedness procedures due to conscious 

decisions that are made in the process of risk and emergency preparedness analysis and the 

selection of acceptance criteria and situations of hazard and accident. Other limiting factors 

can be identified within the areas of human, technology, operational or organisational 

perspectives.   Experts   are   normally   aware   of   the   limitations   that   are   “designed   into   the  

system”.   These   limitations   are   not   necessarily well communicated to society but may be 

exposed in the case of an accident. This may lead to a media crisis and public outrage if an 

accident  should  occur  and  emergency  preparedness  appears  insufficient  compared  to  society’s  

expectations. Limitations should be dealt with openly and honestly in a risk management 

regime. 

4.3 A brief description of the methods 
Emergency preparedness for petroleum activity in the Barents Sea is analysed with regard to 

issues that may be critical to success during all year operations.  

A study of search and rescue (SAR) in the United Kingdom using a Bayesian Belief Network 

has been used as a basis when starting to identify critical issues. This has been compared with 

literature regarding emergency preparedness, survival in cold climates and remote areas and 

information gathered from relevant accident investigation reports related to maritime and 

aviation accidents. 

The results of risk analysis and emergency preparedness analysis have been used to identify 

situations that occur and need to be planned for in order to avoid the loss of life. Incidents or 

“defined situations of hazard and accident” (DSHA) that have occurred and unfortunately, 

occur with a significant frequency are investigated.  Accident investigation reports are 

reviewed to gather information that is critical to evacuation, rescue and ultimately survival. 

The findings from these activities have been used in analysis of barriers using bow ties and 
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event trees to identify critical issues related to successful emergency preparedness in the 

Barents Sea. 

Calculations have been performed to investigate issues affecting the availability and capacity 

of rescue resources for incidents that may occur far from shore. 

Interviews have been used to gather experience from persons who are familiar with operations 

and conditions in the Barents Sea. The interviews have been used to triangulate and test the 

results of analysis and calculations.  

Finally some recommendations are offered to improve the overall probability of survival and 

success in emergency preparedness operations in a remote area and a cold climate.  

4.4 The limitations of the report 
This report concentrates on the phases of evacuation and rescue. Escape within or on a facility 

to the location of the means of evacuation is considered being outside of the scope of work. 

The area considered is limited to the Norwegian sector of the Barents Sea south of Bjørnøya 

and extending eastwards towards the Norwegian/Russian border. This area is enclosed by the 

red and blue lines as shown on the map in figure 1. 

 
Figure 1, Map of the area and the Norwegian/Russian border in the Barents Sea [78 & 87] 

The border between the Norwegian Sea and the Barents Sea is defined by the International 

Hydrographic Organization as a line joining the southernmost point of West Spitzbergen to 

North Cape of Bear Island, through this island to Cape Bull and thence on to North Cape in 

http://en.wikipedia.org/wiki/International_Hydrographic_Organization
http://en.wikipedia.org/wiki/International_Hydrographic_Organization
http://en.wikipedia.org/wiki/Spitsbergen
http://en.wikipedia.org/wiki/Bear_Island_(Norway)
http://en.wikipedia.org/wiki/North_Cape,_Norway


 13 

Norway at 27°45'E [98]. In this report, the Norwegian sector of the Barents Sea is defined as 

the area from 15°E to the Norwegian/Russian border at 37°E and from 70°N to the latitude of 

Bjørnøya at 74,5°N. This corresponds roughly to the area of the south western Barents Sea 

that is or will soon be opened for petroleum activities [87]. The Norwegian/Russian border 

from the coast through the Barents Sea to the North Pole has been disputed for approximately 

40 years. In September 2010 the border dispute between Norway and Russia was resolved and 

an agreement was signed [78]. The border is shown as the blue line in figure 1. 

Methods for anti-icing, protecting vessels and structures against ice accretion, and for the 

removal of ice, de-icing, are not discussed in detail this thesis. Information on this subject is 

available in the following documents: 

 Assessment of Superstructure ice protection as Applied to Offshore Oil Operations 

Safety, Charles Ryerson, April 2009 [55] 

 Secure launch of lifeboats in cold climate, looking into requirements for winterisation, S. 

Torheim and O.T. Gudmestad, 2011, [43] 

4.5 Government premises for the area 
The Norwegian government has stated its visions, ambitions and strategies for the High North 

and the petroleum industry in a white paper to Parliament in 2012 [28]. In addition to the 

regulations, important documents, for example white papers to Parliament, have been 

published which define frame conditions [27-33]. It is important to bear this in mind when 

evaluating evacuation and rescue in the Barents Sea. 

The petroleum sector is one of the most important industries in Norway. The petroleum 

industry is characterised by high risk potential for harm to persons, the environment and 

material assets. After the Alexander Kielland accident in 1980, there has been consensus in 

government and the petroleum industry that the activity must be performed with the lowest 

possible reasonable risk of injury and accidents. The Norwegian government’s  Soria  Moria  

declaration of 2005 stated that the petroleum industry in Norway should be world leaders in 

the area of Health, Safety and Environment. This vision reflects and reinforces long and 

systematic work to strengthen HSE in the sector [27]. 

Management 
There is a regulatory requirement that the activities shall be carried out in a prudent manner 

based both on an individual and an overall assessment of all factors of relevance for planning 

and implementation with regard to health, safety and the environment. A high level for health, 

http://en.wikipedia.org/wiki/Norway
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safety and the environment shall be established, maintained and further developed, cf. Frame 

Regulation § 10 [9]. The key requirement to further develop and continuously improve the 

level of health, safety and environment is well known and an established principle for the 

petroleum industry [27 p280]. 

The Norwegian Ministry of Labour underpins that the principles of holistic management and 

continuous improvement are two particularly important preconditions for achieving 

improvements in the safety level [27 p280]. 

Visions for the High North 
The high north is Norway’s   most   important   strategic priority for foreign policy. The key 

foreign policy objectives in the high north are to safeguard peace, stability and predictability 

and to ensure a comprehensive ecosystem based management protecting biodiversity and 

thereby providing a basis for sustainable exploitation of resources [28 p19]. 

It  is  Norway’s  ambition  to  be  a  leader  in  key  areas  of  wealth  creation  in  the  north  and  the  best  

steward of the environment and resource exploitation in the north. This requires close 

interaction between national, regional and local authorities, businesses and relevant research 

institutions [28 p20]. The Government will facilitate the development of petroleum activities 

in the Barents Sea and ensure that the activities will have positive implications for local and 

regional wealth creation. It is important that there is a good basis for sound resource 

management and sustainable development in this region. This demands high standards of 

health, safety and environment, that Norway is a leader in research and development and use 

of technological solutions offshore, and that Norway has robust oil spill response and search 

and rescue capacity [28 p110&111]. 

Evacuation 
The regulations stipulate that it should be possible to evacuate personnel from the facilities to 

a safe area quickly and effectively under all weather conditions. The Ministry of Labour 

emphasizes that it is important that all personnel on board facilities are to be evacuated 

quickly in a dangerous situation, regardless of weather, and will ensure that the PSA follows 

up the issue [27 p301]. 

Emergency preparedness in the High North 
The Arctic is a region characterized by long distances, difficult climate and relatively few 

rescue resources. Three factors are therefore essential. First the prevention of accidents is 

important because the consequences for personnel and the environment may be greater with 
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accidents in the North. Secondly, cooperation between countries is essential for the effective 

utilization of available rescue resources and to execute rescue as quickly as possible. Finally, 

it is important to note that time factors, distances and the climate will render certain actions 

impossible, no matter how large resources are provided for emergency services. 

It is therefore important that participating companies and their sector organizations work 

systematically to reduce the risk of accidents and in the event of an incident are able to handle 

deal with a crisis with their own resources to a greater extent than is necessary in other sea 

areas. The Government wants to promote transparency concerning the challenges, 

development of knowledge and experience transfer [28 p101].  

Summary of visions, ambitions, goals and strategies 

 The Barents Sea (High North) is a prioritised area of strategic importance to Norway.  

 Norwegian petroleum industry shall be world leaders in HSE. 

 It  is  Norway’s  ambition  to  be  a  leader  in  key  areas  of  wealth  creation  in  the  north  and  the  

best steward of the environment and resource exploitation in the north. 

 The industry shall further develop and continuously improve the level of health, safety 

and environment. 

 All personnel on board facilities are to be evacuated quickly in a dangerous situation, 

regardless of weather. 

 The Government wants to promote transparency concerning the challenges, development 

of knowledge and experience transfer. 

 The industry shall work systematically to reduce the risk of accidents and be able to 

handle (resolve/deal with) a crisis with their own resources. 

4.6 Regulatory requirements 
Unless specifically stated, reference to regulations in this thesis means the common 

Norwegian HSE regulations issued jointly by the Norwegian Petroleum Safety Authority 

(PSA), the Norwegian Climate and Pollution Agency (CPA) and Norwegian Board of Health 

Supervision (BHS). The combined regulations are comprised of the Framework Regulation 

[9], the Management Regulation [10], the Activities Regulation [11] and the Facilities 

Regulation [12]. 

The overruling requirement is that all activities shall be performed in a prudent manner as 

stipulated in the Frame Regulation §10 [9] 
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The activities shall be prudent, based both on an individual and an overall assessment of all 
factors of relevance for planning and implementation of the activities as regards health, 
safety and the environment. Consideration shall also be given to the specific nature of the 
activities, local conditions and operational assumptions. 
 
A high level for health, safety and the environment shall be established, maintained and 
further developed. 
 
The Norwegian regulations are built around the requirement of functionality. The regulations 

refer to industry standards and norms where the authorities have found that the safety level 

required by the regulation can be met by using the referenced standard. This is a principle laid 

down in the Frame Regulation § 24 [9]. 

4.7 Requirements set by industry bodies 
When the responsible party uses a standard referenced in the guidelines to the regulations, it 

can normally be assumed that the regulatory requirements have been met [9]. It is in the 

industries’ own interest to develop standards that the authorities can refer to in the guidelines 

to the regulations. Some of the most commonly referenced standards and norms are the 

international standards developed by ISO and the Norwegian standards developed by the 

Petroleum industry and known as Norsok standards. 

In addition, the industry has developed guidelines through the Norwegian Oil Industry 

Association (OLF). These guidelines are normally not referred to in the regulations but are an 

important contribution to a common set of requirements for the industry. The OLF guidelines 

for emergency preparedness and for helicopter operations are referred to in this thesis. 

4.8 History of petroleum activities in the Barents Sea 
The information in this section is the result of an analysis of Barents Sea exploration well data 

gathered   from   the   Norwegian   Petroleum   Directorate’s   fact pages on Internet [92]. 

Background information for this section is provided in appendix A.4.  

Exploration in the Norwegian sector of the Barents began on 1st June 1980 with Treasure 

Seeker drilling well 7120/12-1 for Norsk Hydro. The well was permanently abandoned as dry 

with weak hydrocarbon shows on 12th October 1980  

Exploration in the Barents Sea was a summer activity from the first exploration wells in 1980 

until 1986. During this period there were normally two or more rigs drilling in the region. 

This period has been the most active exploration period so far. Ross Rig and Polar Pioneer 
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were the first rigs with a full winter drilling program starting in the winter of 1987/1988. 

From 1987 until 1994 exploration became an all year activity but predominantly a winter 

activity. Normally there was one rig active, occasionally two in this period. 

After a period of low or no exploration from 1994 to 2004, exploration is increasing. In the 

period from 2000 to 2011, exploration has been an all year activity. Predominantly there has 

only been one rig active at a time, drilling being performed mainly in autumn and winter.  

There is all year production on the subsea Snøhvit field, started in 2007. The first manned 

production installation will be the Goliat FPSO planned to be installed in 2013. New field 

developments can be expected in the near future for the Skrugard and Havis fields.  

As a curiosity it can be mentioned that the exploration well drilled furthest from mainland 

Norway in the Barents Sea was operated by Norsk Hydro using Polar Pioneer in 1992 on 

block 7316/5-1. The well location was 73.51997N, 16.43325E, ca 217 NM or 402 km from 

Hammerfest.  

4.9 The 22nd concession round 
On the 2nd November 2011, qualified companies were invited to nominate blocks of interest 

for the 22nd concession round. The Norwegian oil and energy minister, Ola Borten Moe, 

announced at the Arctic Frontiers conference in Tromsø in January 2012 that interest was 

particularly high for the Barents Sea. A total of 181 blocks were nominated in this area, the 

highest number ever [79]. 

“In  this  nomination,  there  has  been  particular  interest  in  our  northern  seas,  which  confirms  

the Barents Sea as an exciting and internationally attractive petroleum province. This 

represents a great opportunity for the entire region. Exploration of all opened areas is also 

very important to achieve further activity, employment and spin-offs in all of Norway,” said 

the oil and energy minister, Ola Borten Moe [79]. 

A total of 37 companies have nominated blocks on the Norwegian continental shelf and the 

Barents Sea. The Norwegian Oil and Energy department (OED) has reduced the number of 

blocks from the nominated 181 to 72 open for application. OED has mainly concentrated on 

blocks that are of interest to more than one operator. A number of the blocks are at or beyond 

200 NM from Hammerfest. Maps are included in appendix A.6. The invitation to apply for 

participation in blocks in the 22nd round was announced on 26th June 2012 and the granting of 

new licenses is scheduled for the spring of 2013 [80]. 
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In connection with the announcement of opening the 22nd concession round for application, 

the oil and energy minister, Ola Borten Moe said, “We are now experiencing record levels of 

interest in the Barents Sea. With 72 of a total of 86 open blocks the Barents Sea stands out as 

the sea of opportunity in the 22nd round. We have had very encouraging exploration results, 

and I will now give the industry access to new areas related to these discoveries” [80]. 
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5 METHODS (incl. theory) AND MATERIALS (background/facts) 

5.1 Introduction to methods employed for analysis 
Emergency preparedness for petroleum activities in the Barents Sea is examined based on: 

 Risk management theory: Risk Analysis, ALARP, Emergency Preparedness Analysis 

and Defined Situations of Hazard and Accident (DSHA). 

 Examination of literature pertaining to emergency preparedness and survival in cold 

climates and remote areas.  

 Performing analysis of barriers using event trees, bow ties and networks to identify 

critical issues related to successful emergency preparedness. 

 Examination of information gathered from relevant accident investigation reports 

related to maritime and aviation accidents. 

 Performing interviews to gather experience from operations in the Barents Sea. This 

information is used to triangulate results of analysis and calculations.  

 Performing example calculations relevant to evacuation from facilities far from shore.  

5.1.1 Research design 
Qualitative scenario analysis is used as the main research method in this thesis. Bow tie 

analysis, supported by event trees and influence networks have been used to examine the 

effects of findings in literature and interviews when applied to specific scenarios.  

5.1.2 Review of the strength and weaknesses of the selected methods 
The main analysis in this thesis is performed using event trees and bow ties to identify critical 

issues. The analysis has been performed with a basis in literature and interviews with 

personnel who have experience from the Barents Sea. A qualitative approach has been used 

rather than quantitative. This approach has been chosen because the goal has been to screen 

the information to identify critical issues that should be given consideration when planning 

petroleum activity in the Barents Sea. A more detailed qualitative and quantitative approach 

should be employed by those venturing into the Barents Sea to identify issues and optimise 

the choice of solutions through risk analysis and ALARP process. 

The quality of the work done in this thesis may have been improved if it had concentrated on 

one detailed analysis rather than on three situations and a proposal for rescue on long haul 

routes. The work in this thesis is potentially too broad to give an in depth insight into specific 

issues. However, the author considers that attention drawn to specific issues is documented, 
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justified and does provide a basis for increased awareness of challenges to evacuation and 

rescue in petroleum activity in the Barents Sea. 

5.1.3 Reliability and validity of data  
When performing interviews with persons involved in the petroleum industry, trade unions 

and search and rescue organisations, it has been made clear that a student is enquiring about 

relevant   issues   and   that   information   provided   is   for   the   student’s   thesis   and   not   to   an  

employee of the Norwegian Petroleum Safety Authority (PSA). Even though an attempt has 

been made to keep the two different roles of the author separate, it cannot be ruled out that the 

response to the questions has been influenced by the fact that the student is an employee of 

the Norwegian authorities. There is, however, no reason to believe that information has been 

withheld or that incorrect information has been provided.  

When considering information found in investigation reports from previous accidents, it is 

important   to  be  aware  of   the  relevance  of   the  information  in  today’s  operations.  There  have  

been many improvements made to equipment, personnel competence and the way in which 

operations are performed today. The information gathered from investigation reports has been 

of a generic nature related to the challenges posed during evacuation and rescue. The aim has 

been to evaluate issues related to methods and operations that are relevant independently of a 

specific make of equipment. 

Another issue that needs to be addressed is the experience that the author has gained from 

working with these issues in the capacity of an employee of the PSA. It cannot be ruled out 

that the author has been influenced in discussions with colleagues at the PSA and his 

supervisor at the University of Stavanger. It is difficult to separate oneself from the 

experience one has and the knowledge base that has been developed. There is a danger that 

the author is biased and interprets findings in light of prior knowledge rather than taking a 

broad and open look at the collected data.  

A final comment needs to be made concerning the authors background as an engineer rather 

than a social scientist. This may lead to a bias towards placing greater emphasis on technical 

aspects rather than the role of social issues like the role people, operations and organisations 

play in robust evacuation and rescue systems. 
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5.1.4 Use of interviews 
Interviews have been conducted with personnel working at the Joint Rescue Co-ordination 

Centre in Bodø, members of the crew on the Sea King rescue helicopter stationed at Banak 

and Sola, personnel responsible for helicopter operations a petroleum company, personnel 

responsible for HSE in a trade union, personnel in a drilling entrepreneur company, an 

operating company and personnel with experience in operation of emergency response 

vessels. These persons have a considerable combined experience of issues that are important 

to both emergency preparedness and helicopter operations in the Barents Sea. They have 

provided valuable insights into the specifics of the problems examined in this thesis. 

5.1.5 Use of literature 
There is extensive literature available covering specific issues related to operation in cold 

climates, the Barents Sea and issues related to survival at sea after marine or aviation 

accidents. As far as possible, it has been an objective to confirm information found in 

literature sources through interviews with persons familiar with operation in the Barents Sea. 

The documents that are used as a source of information in this thesis are listed in the reference 

section. Some of the most important documents that have been used in order to triangulate 

and verify critical issues regarding survival and rescue of persons at sea and in cold climates 

are listed below: 

 Frank Golden, Michael Tipton, 2002, Essentials of Sea Survival, Human Kinetics [7] 

 Lisa Norrington, John Quigley, Ashley Russell, Robert Van der Meer, 2008, Modelling 

the reliability of search and rescue operations with Bayesian Belief Networks, Reliability 

Engineering and System Safety no. 93 p949-949 [44] 

 CAP 641 Report of the Review of Helicopter Offshore Safety and Survival, Civil 

Aviation Authority, First published February 1995 [63] 

 Cold challenges, Health and working environment on facilities in northern areas, 2010, 

Thelma/PSA [45] 

Work by Golden and Tipton [7] is referenced in the Thelma [45] and NATO [26] documents 

reducing independence between sources to some extent. The following documents are not 

used directly as references in this thesis, however they provide useful background information 

supporting the issues discussed.  

 International Maritime Organisation (IMO), May 2006, Guide for cold water survival, 

MSC.1/Circ.1185, Ref: T2/6.01 [25] 
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 NATO Research and Technology Organisation, February 2008, Survival at Sea for 

Mariners, Aviators and Search and Rescue Personnel, RTO-AG-HFM-152 [26] 

5.1.6 Bow Tie analysis 
The Bow Tie method and its associated diagrams will be used to analyse barriers in place to 

ensure that threats, hazards and consequences are managed. The bow tie method has been 

developed by combining fault tree analysis, event tree analysis and the concept of barriers. 

5.1.7 Networks 
Lisa Norrington, John Quigley, Ashley Russel and Robert van der Meer have published a 

paper   “Modelling   the   reliability   of   search   and   rescue   operations   with   Bayesian   Belief  

Networks”.    It  considers  the  effectiveness  of  Search  and  Rescue  operations  coordinated  by  the  

UK Maritime and Coastguard Agency [44]. 

 
Figure 2, Bayesian Belief Network used in analysis of UK marine rescue centres [44] 

They have used the method to evaluate the probability of success of a search and rescue 

operation in light of a reorganisation of the Main Rescue Coordination Centres (MRCC) in 

the UK. The probability of success of a search and rescue operation has, however not been 

calculated in this thesis. The Bayesian Belief Network (BBN) in figure 2 above has been used 

as a starting point to identify and evaluate critical issues that have an effect on the outcome of 
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evacuation and rescue operations in the Barents Sea. The network provides a basis to explore 

relevant issues influencing the processes of evacuation and rescue. These issues are explored 

in section 6 using event trees and bow tie diagrams to identify barriers to protect against 

negative development of situations of hazard.  

5.1.8 Use of calculations  
Great circle routes providing the shortest distance between to points are used. In the cases 

where distances have been analysed, the Haversine formula [93] is used to calculate the 

distance and the heading. The calculations have been verified by using an Internet program 

[94] based on the Vincenty method of great circle calculation [56]. The effect of wind on the 

helicopter trajectory has also been considered and calculation of the ground speed based on 

air speed and wind speed has been performed. The position of airports is taken from Airport-

Data.com on Internet [96] 

5.2 Risk management 

5.2.1 Risk analysis 

In this thesis, emphasis is placed on some processes within risk management without covering 

all aspects of the concept. The focus is on risk analysis, acceptance criteria, defined situations 

of hazard and accident (DSHA) and the concept of ALARP (as low as reasonably 

practicable). 

Risk is a natural part of society and is controlled through risk management processes. We 

cannot choose to live without risk and therefore, we define an acceptable level for the residual 

risk that we cannot remove. Risk analysts may approach risk with a scientific rationality, 

while ordinary persons, those who must live with decisions based on the mechanical and 

mathematical results of risk analysis, have a perception of the risk. A  person’s perception is 

often complicated and based on a variety of issues that are difficult to define with numbers. 

Risk perception has to do with how individuals understand, experience and deal with risk. 

Risk has to do with all aspects of a   person’s perception of danger and hazards, the 

consequences the hazards may lead to and what they consider to be acceptable risk levels [1 

p40]. 

Risk acceptance criteria (RAC) are defined in advance of a risk analysis process.  RAC set the 

upper limit of risk that will be accepted. They are also used as a decision basis when 

evaluating choice of solutions and risk mitigation measures. Acceptance criteria are usually 



 24 

defined for risk of loss or damage to persons, environmental and economic values [1 p153]. It 

is normal to define a lower limit of risk. If the results of the risk analysis calculations in a 

quantitative risk analysis (QRA) fall below the lower limit, the risk level is considered as 

negligible. The area between the upper and lower risk acceptance level define the ALARP 

area. Risks that fall within this range should be dealt with employing risk-reducing measures. 

Risk reducing measures should be identified and implemented to reduce the risk level in the 

ALARP area unless there is a disproportionately large negative relationship between the 

benefits (risk reduction) and disadvantages (cost or practical) to achieve reduction [4 p118]. 

 
Figure 3 Risk acceptance criteria and the ALARP principle 

Most persons have a relationship to risk and risk acceptance criteria. In the simplest form, we 

have an opinion about the "chances" that we are willing to take. It can be anything from 

buying a lottery ticket to investing large sums of money on the share market (economic risk), 

or cycling to work or participating in an extreme sport like skydiving (risk of personal injury 

or even death). 

Risk analysis is based on generic statistical information of events at similar facilities or 

activities that are to be analysed. Based on this information and taking into account plant-

specific factors (e.g. safety systems) a prediction of the probability of events occurring at the 

facility being analysed is calculated. This is not an exact science because one cannot predict 

the future of the plant by analyzing possible scenarios and potential outcomes. The results of 

a risk analysis are an estimate of the future, the plant's history cannot be written in advance. 

According to Aven et.al., "It is important to distinguish between the statistical analysis of 

historical data, and assessments of what the world will  look  like  in  the  future”  [1 p42]. 
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Based on the risk that one has chosen to accept, an assessment of potential situations of 

hazard and accident is performed. These situations are called defined situations of hazard and 

accident (DSHA) and govern the design of emergency response measures that are established. 

If the probability of an event occurring is above a predefined level, emergency response 

measures need to be established in order to take care of the consequences. In this process the 

"worst case" events often have such a low probability that the emergency response plans are 

not designed to cover these rare events. Contingency plans for a worst-case event, may well 

be developed but the requirements set for performance of emergency response will not 

necessarily be met if the event occurs. An example of this would be a disaster with 1000 

critically injured persons. The selection of DSHAs and associated performance requirements 

for emergency response measures, set significant limits on how contingency measures are 

dimensioned. At this stage a latent future crisis may be designed into the system if 

"probability" turns out not to be on our side and the "improbable" event occurs. If an accident 

outside of the design criteria occurs at some stage in the lifetime of the system, attention may 

be drawn to an apparent lack of emergency response if the limitations have not been 

communicated. This may occur even though the situation is handled properly within the plan, 

acceptance criteria and performance requirements. 

 
Figure 4 Simplified model for risk and emergency preparedness analysis 

The process of risk analysis and emergency preparedness analysis is a requirement in the 

regulations, cf. Management Regulation § 17 [9] and is normally performed according to the 

methods described in Norsok Z-13 [17]. 

It is important that the data used in risk analysis is relevant and qualified for the activity. 

Recognised sources for generic data for use in risk analysis are listed in Norsok Z-013 Annex 

D. This generic data may not be relevant for the Barents Sea without further qualification. 

Norsok Z-013 recommends the use of data from the Gulf of Mexico and the UK for helicopter 

transport [17 p83]. Data from the Gulf of Mexico will need to be evaluated carefully for 
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relevance. The UK document deals with some issues that are relevant to the Barents Sea and 

is a reference document in this thesis [63].  

5.2.2 Emergency preparedness 

An emergency is defined as a hazardous event that cannot be handled by normal measures 

and requires immediate action to limit its extent, duration or consequences [15].  

Emergency preparedness includes all technical, operational and organisational measures to 

prevent a hazardous situation developing into an accident, or that prevents or reduces the 

harmful effects of an accident. In the petroleum industry it is common to limit emergency 

preparedness to the measures that are implemented under the leadership of the emergency 

response organisation [1 p121]. 

The process of risk and emergency preparedness analysis leads to defined situations of hazard 

and accident (DSHA). The DSHAs are the hazardous and accidental events that will be used 

for dimensioning of emergency preparedness and the basis for the emergency preparedness 

plan [17]. According to the Activity Regulation § 73, the responsible party, i.e. the operator, 

shall   establish   emergency   preparedness   measures   for   the   DSHA’s [11]. A list of typical 

DSHA’s  for  operations  on  the  Norwegian  continental shelf is shown below [41]. 

 Acute pollution to sea 
 HC leak in process area, process fire or explosion, riser leak followed by fire/explosion 
 Loss of well control, blowout followed by fire/explosion 
 Fire in living quarters, electrical rooms, auxiliary equipment 
 Falling object 
 Personal injury/illness (Medevac) 
 Man overboard when working over the sea 
 Loss of control of radioactive source 
 Ship on collision course, collision with platform supply vessel 
 Personnel in the sea in connection with emergency evacuation 
 Helicopter accident in the sea, helicopter accident on facility 
 Accident with radioactive source 
 Terror or act of sabotage 
 Epidemic 
 Extreme weather (forecast) 

There are four regions on the Norwegian continental shelf where operators have chosen to 

cooperate and share resources, typically helicopters and vessels. These four areas are the 

Southern Fields, Troll-Oseberg, Tampen and Halten.  There are 7 DSHAs defined within the 
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regime of area emergency preparedness and specific performance requirements are associated 

with each of these [41].  

 Man overboard when working over the sea 
 Personnel in the sea following a helicopter accident 
 Personnel in the sea following an emergency evacuation 
 Danger of ship collision 
 Acute release of oil 
 Fire with the need for external assistance 
 Acute medical situation (injury, illness) with need for external assistance  
 
In 2008 the PSA engaged Preventor to examine the status of emergency preparedness in the 

Norwegian petroleum industry. It was found that one of the most common situations requiring 

emergency preparedness resources is the need for ambulance transport or medical evacuation 

(medevac) of a patient from an offshore facility to a place where medical services can be 

provided onshore [41 p78]. As illustrated in figure 5 below, on the right it can be seen that for 

the period from 2003 to 2007, there was a fairly constant annual total of approximately 230 

ambulance flights per year. In the same figure 5, on the right it can be seen that the number of 

flights per 1000 persons within each area varies greatly form ca 6 to 30 per 1000. The reason 

for the large difference between the Southern Fields and Halten is given as being the fact 

there are more scheduled transport flights to the densely populated Southern Field area 

compared to a relatively sparsely populated area on Halten. In the southern area it is possible 

to send less urgent cases onshore using a scheduled transport flight rather than deploying a 

SAR helicopter [41 p44]. 

  
Figure 5, Left: Total number of ambulance flights for all SAR helicopters on the Norwegian 

shelf for the period of 2003 to 2007, Right: Number of ambulance flights per 1000 
employees for all SAR helicopters on the Norwegian shelf [41 p44] 

In the Barents Sea it is common that there is only one scheduled flight to the rig per day, 5 to 

7 days per week. The need for ambulance flights in the Barents Sea is presumed similar to 

Halten due to few transport flights in the area at present.  
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Examples of performance requirements for capacity and response times for rescue of 

personnel are given in OLF guideline 064 Establishing Area Emergency Preparedness [21]. 

The requirements shown in table 1 are relevant for this thesis. This is a guideline developed 

by responsible parties in the petroleum industry and is adopted as a standard by most 

operators. It is normal that operators do their utmost to meet these requirements for their 

emergency response. 

Table 1: Performance requirements 
DSHA Rescue means Capacity Performance requirement 
Injury or illness of personnel 
requiring external medical 
assistance 

SAR helicopter 
Transport helicopter 
330 SAR helicopter 

1-2 persons Personnel shall be at 
hospital within 3 hours  

Personnel in the sea due to a 
helicopter accident 

SAR helicopter 
MOB boat 

21 persons All personnel retrieved 
from the sea within 120 
minutes 

5.2.3 Risk communication 

Laymen generally have little confidence in experts and one can observe that the confidence of 

the public is important for success in achieving effective risk communication. It is necessary 

to take into account the lack of confidence among the public and create good processes with a 

genuine dialogue between the public and experts. Aven et.al. emphasize that through 

dialogue, it is important to capture the knowledge and insight of others in addition to the 

experts, "Considerations of the politicians, laymen or interest groups, are important for the 

risk perception that prevails in society. Their reviews are often based on important knowledge 

and insights that experts do not capture in their considerations" [1 p41]. A crisis of 

confidence may be alleviated by ensuring processes where interest groups, public and affected 

parties are given the opportunity for real participation and influence [1 p42]. 

Trust plays a central role in risk communication and Renn suggests seven components of trust 

that must be considered for successful risk communication [3 p223],  

 Perceived competence; Degree of technical expertise in meeting an institutional mandate 

 Objectivity; Lack of bias in information and performance as perceived by others 

 Fairness; Acknowledgement and adequate representation of all relevant viewpoints 

 Consistency; Predictability of arguments and behaviour based on past experience and 

previous communication efforts 

 Sincerity; Honesty and openness 

 Faith; Perception of goodwill in performance and communication 



 29 

 Empathy; Degree of understanding and solidarity with potential risk victims 

Risk communication is a balance between many factors. One does not wish to frighten 

persons by giving them information that may be difficult to relate to and that can make 

persons afraid or unduly worried [2 p62]. At the same time it is a goal to convey sufficient 

information so that persons are aware of the dangers that exist and why one does not take into 

account the extremely rare events. Trust can be built between the parties by admitting that 

unlikely events can occur and that emergency preparedness may not be designed to handle 

such situations. 

When risk is communicated, the process can be described in a transmitter/receiver 

relationship in which the message is affected and can be transferred neutrally, enhanced or 

weakened. Feedback from receiver to transmitter is exposed to similar influences. Distortion 

or disturbance by the media occurs in a similar way as in analogue electronic 

communications.  The  phenomenon  is  often  referred  to  as  “social  amplification  of  risk”  and  is  

described in detail by Renn [3]. Everything that leads to a non-neutral transfer of the message 

from source to receiver can be described as noise. This may be the media, individuals, groups, 

organisations or agencies that distort the message. The sketch below is an interpretation of the 

communication process and is a simplification of the basic elements of Renn's model of 

communication and the social amplification of risk. 

 
Figure 6 Simplified communication model 

5.2.4 Process – risk analysis, risk communication, risk perception 

Based on the theory of social amplification of risk and the simplified communication model 

in   figure  6,   the  process   of   risk   analysis,   risk   communication  and   the  public’s  perception  of  

risk is illustrated in the upper half of the diagram in figure 7. The lower half of the diagram 

illustrates a similar process for communication and perception in the case of an accident. 

Similar communication, perception and feedback mechanisms operate in both cases. These 



 30 

two processes are drawn in parallel to illustrate that decisions made in the risk process can be 

decisive for the perception of the accident. 

 
Figure 7, The path to public outrage 

Individuals, groups and organizations that can easily be perceived as noise, can make an 

important contribution to the process. If the process does not take sufficient account of the 

"noise" it can result in public outrage. With the appropriate involvement of individuals, 

groups and organizations one may utilise these resources and achieve a positive contribution 

to the   process   thereby   reducing   the   probability   of   “noise   and   public   outrage”.   It   may   be  

prudent  to  prepare  one’s  organization  with  regard  to  the  mechanisms  of  interaction  with  third  

parties regarding involvement, trust, communication and perception. 

5.3 Barriers 
The Management Regulation § 5 requires that barriers shall be established to reduce the 

probability of failures, hazards and accident situations developing and thereby limit possible 

harm and disadvantage. Where multiple barriers are required for protection there shall be 

sufficient independence between the barriers. Personnel shall be aware of the barriers that 

have been established and which function they are intended to fulfil. Furthermore, personnel 

shall be aware of barriers that are impaired or not functioning and measures shall be 

implemented to compensate for and reinstate failed or impaired barriers. Performance 

requirements shall be defined for the technical, operational and organisational elements that 

make up a barrier function. Performance of barriers can include capacity, reliability, 

accessibility, efficiency, integrity, robustness and ability to withstand loads [9]. 
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The PSA has provided the following definition of a barrier: A barrier is a technical, 

operational or organisational element that when functioning alone or together shall reduce 

the possibility that a fault, hazard or accident occurs or will limit or prevent damage [61]. 

Norsok Z-013 defines a safety barrier as a physical or non-physical means planned to prevent, 

control, or mitigate undesired events or accidents. Barrier elements are the physical, 

technical or operational components in a barrier system. A barrier system is designed and 

implemented to perform one or more barrier functions. The barrier function is intended to 

prevent, control or mitigate undesired or accidental events [17]. 

The concept of technical barriers is fairly easy to grasp as it employs technical measures like 

instrumentation, valves, fire extinguishing systems etc. to provide the barrier element. The 

distinction between the concepts of operational and organisational barriers is perhaps more 

difficult to define. It has not been possible to find adequate definitions of these terms. It is 

more common to list and exemplify the types of barriers that are defined as operational or 

organisational.  

The following is an attempt to define the terms: 

Technical barriers: Physical barriers in the form of a technical means or measure, typically a 

physical device, structure or piece of equipment. 

Operational barriers: Non-physical barriers that are dependent upon actions of a person, often 

controlled by procedures and supported by training and experience. 

Organisational barriers: Non-physical barriers in the form of strategies, plans or methods 

developed as a framework for activity by and within an organisation.  

In an attempt to illustrate the concept of the function of barriers the following definition is 

derived from many sources and illustrated in figure 8 below; a barrier is a technical, 

operational or organisational element that, when functioning alone or together with other 

barrier elements will break a chain of events and stop or limit the negative development of the 

situation.  

 
Figure 8, Concept of hazards, barriers and accidents 
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In 1961 Gibson introduced an energy model, a concept of separating a source of energy or a 

hazard from a victim or a vulnerable situation by placing a barrier between them. William 

Haddon popularised this perspective in 1970 by introducing the concept that accidents occur 

when harmful energy in the absence of barriers is allowed to have an effect on an object or 

victim [60 p15]. This basic concept is still valid and is the basis of engineering practice when 

endeavouring to eliminate or prevent accidents [60 p17]. The concept has been developed to 

encompass physical and non-physical elements referred to as technical, operational and 

organisational  barriers.  James  Reason’s  Swiss  cheese  model  is  a  common  illustration  of  how  

multiple barriers can be impaired, illustrated as holes, and lead to the failure of the defences 

resulting in an accident [60 p18]. 

The Bow Tie method and its associated diagrams will be used to examine barriers in place to 

ensure that threats, hazards and consequences are managed. The bow tie method has been 

developed by combining fault tree analysis (on the left in the bow tie), event tree analysis (on 

the right in the bow tie) and the concept of barriers. These elements are defined in accordance 

with the Bow Tie method and the training material developed by CGE Risk Management 

Solutions. Text in cursive indicates definitions taken from the course material [70]. 

Hazard: Anything that is a source of potential loss or damage  

Top event: A point in time that describes the release or loss of control over a Hazard  

Threat: A possible direct cause that will potentially release a Hazard by producing a Top 

Event 

Threat barriers: A barrier that prevents the release of a Hazard by acting against a Threat or 

Top Event  

Threat control: A function that prevents or influences a real chain of events in an intended 

direction. Threat controls have a proactive function between the threat and the release of the 

hazard that may lead to the top event if unchecked. They are effective on the left hand side of 

the bow tie. 

 Threat control (elimination): A proactive function that removes or avoids the threat by 

designing the problem out of the fault chain on the left side of the bow tie.  

 Threat control (prevention): A proactive function that does not remove the threat but is 

a preventive measure that can stop or obstruct the fault chain on the left side of the 

bow tie. 
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Recovery measure: A barrier that acts on the likelihood or severity of a potential 

consequence. Recovery measures have a reactive function between the top event and the 

consequence and reduce or limit the effect of the top event. They are effective on the right 

hand side of the bow tie. 

 Recovery measure (reduction): A reactive control that decreases or lessens the effect 

of the top event thereby limiting the consequence. 

 Recovery measure (mitigation): A reactive control that lessens the significance of the 

consequence. Takes effect after the consequences have become apparent and works to 

minimise further consequences. 

Consequence: A potential event resulting from the release of a Hazard, which directly results 

in loss or damage  

Escalation factor: A condition that leads to increased risk by defeating or reducing the 

effectiveness of barriers (barrier decay mechanism, defeating factors) 

Escalation factor control: A barrier that manages the conditions that reduce the effectiveness 
of other barriers 

An evaluation version of BowTie XP software has been used to generate the bow tie 

diagrams. They have subsequently been modified with a licensed version of the software [71]. 

 
Figure 9, Elements of a bow tie analysis [70] 

The diagram in figure 9 above illustrates the building blocks of a bow tie analysis. In order to 

analyse a complex sequence of events it may be necessary to use a tiered or multi level bow 

tie analysis as illustrated in figure 10 below. In a tiered analysis a consequence becomes a 

new top event in the next bow tie and is analysed for threats, threat control, recovery 

measures and consequences. The process can be repeated until the required level of 

sophistication is achieved in the analysis.  
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Figure 10, Tiered or multi layered bow tie analysis [70] 

A barrier analysis should address the following issues: 

 What is the barrier? (System and elements) 

 What shall the barrier eliminate or prevent (left hand side)? 

 What shall the barrier reduce or mitigate (right hand side)? 

 How can the barrier be weakened or defeated? (Escalation factor) 

 How can weakening or defeating the barrier be eliminated or prevented? (Escalation 

factor control) 

 What is the performance requirement of the barrier? 

 How can the barrier and performance requirements be tested? 

 Are there dependencies between the various barriers in the protection system? 

5.4 Escape, Evacuation and Rescue 
The terms escape, evacuation and rescue are defined in ISO 15544:2010 [15] and the goals of 

these activities are given in ISO 19906:2010 [14] 

Escape 
Escape is defined as the act of personnel moving away from a hazardous event to a place 

where its effects are reduced or removed [15]. The goal of escape is to ensure that, in an 

emergency, personnel move to a place of relative safety on the installation, consistent with the 

specified performance standards [14] 

Evacuation 

Evacuation is defined as a planned method for leaving the installation in an emergency [15]. 

The goal of evacuation is to ensure that personnel leave the installation to a place of relative 

safety outside the hazard zone consistent with the developed performance standards [14]. 
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Rescue 

Rescue is defined as the process by which those who have entered the sea directly or in 

survival craft/life rafts are retrieved to a place where medical assistance is available [15]. 

The goal of rescue is to retrieve evacuees to a place of safety [14]. 

5.4.1 Evacuation 
There are basically two types of evacuation, precautionary and emergency. Precautionary 

evacuation is carried out when a situation is seen to be developing and personnel onboard the 

facility that are not essential to the emergency operation are evacuated. Emergency 

evacuation is performed when a situation has deteriorated beyond control or appears to be 

developing so quickly that it is deemed safest to evacuate all personnel from the facility.  

Table 2, Definition of means of evacuation as given in ISO 15544:2000 and ISO 19906:2010 
  ISO 15544 [15] ISO 19906 [14] Example 
Primary 
means of 
evacuation 

Preferred method of leaving the 
installation in an emergency which 
can be carried out in a fully 
controlled manner under the 
direction of the person in charge 

Method of evacuation that can be 
carried out in a controlled manner 
and under the direction of the 
person in charge and the preferred 
means 

Helicopter 

Secondary 
means of 
evacuation 

Method of leaving the installation 
in an emergency which can be 
carried out in a fully controlled 
manner under the direction of the 
person in charge, independent of 
external support 

Controlled means of removing 
personnel from the installation, 
which can be carried out 
independently of external support 

Bridge, 
lifeboat 

Tertiary 
means of 
evacuation 

Method which relies considerably 
on  the  individual’s  own  actions 

Method of leaving the installation 
that relies heavily on an 
individual’s  own  actions,  is  used  
when the primary and secondary 
methods are not available, and has 
an inherently higher risk 

Life raft, 
ladder, 
escape 
chute 

Preferred 
means of 
evacuation 

  Method of choice for evacuating 
personnel based on the lowest risk 
and on the familiarity, frequency of 
use, availability and suitability for 
prevailing conditions 
Note Normally, this is the method 
used to transfer personnel to and 
from the offshore location 

Bridge 
Helicopter 
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The various choices of evacuation method have been defined in the ISO standards 15544 and 

19906. The definitions are provided and compared in table 2 above. The preferred means of 

evacuation is normally helicopter, which is almost always the method used for precautionary 

evacuation. Emergency evacuation will most often be conducted with the facilities own 

evacuation means, e.g. lifeboats. This may be necessary if there is not time to wait for the 

arrival of helicopters or if it is not possible to land helicopters due to the nature of the 

incident, e.g. a gas leak. External resources may be called upon to assist in the evacuation of 

injured or seriously ill persons.  

Norsok S-001 defines and prioritises preferred means of evacuation for facilities that are not 

connected by a bridge as: 

1. Helicopter 

2. Free-fall lifeboats 

3. Escape chute with life rafts 

For installations connected by bridge to other facilities the bridge is considered as the primary 

means of evacuation [18]. 

Helicopter evacuation 

Helicopter evacuation is considered the preferred method of dry evacuation from a facility. 

The performance or availability of helicopters is governed mainly by visibility. Under normal 

operations, a minimum cloud base of 200 to 300 meters is necessary and a horizontal 

visibility of 0,5 nautical mile. Helicopters do not normally operate on a helicopter deck in 

winds over 55 to 60 knots, Beaufort 10. Normal transport flights to installations may be 

performed at wind speeds with gusts up to 60 knots [22]. 

In an emergency situation the operational limits can be exceeded at the discretion of the pilot 

[22]. The success of an operation in adverse weather conditions will be dependent on wind 

speed,  visibility,  fog  or  snow  and  the  pilot’s  ability  to  operate  under  the  prevailing conditions. 

The transport helicopters are the main resource for evacuating personnel in an emergency 

situation. The Norwegian rescue service, 330 squadron, has an excellent record in rescue 

operations under adverse conditions. The capacity of the rescue service is limited relative to 

the large number of persons who can be onboard a facility operating in the Barents Sea.  
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Marine evacuation – lifeboats and life rafts 

In 1998 the Norwegian Petroleum Directorate (NPD) engaged Det Norske Veritas (DNV) to 

prepare a technical report on evacuation and rescue means. The report is titled Evacuation and 

Rescue Means, Strength Weaknesses and Operational Constraints, YA-795, Norwegian 

Petroleum Directorate, 1998 December [40].  

According to the report, evacuation by freefall lifeboat is considered the most reliable. The 

report was made prior to the discovery of weaknesses related to free lifeboats in 2005 and 

subsequent years. The Norwegian Oil Industry Association (OLF) has performed extensive 

work related to issues with freefall lifeboats. The OLF work has resulted in many 

improvements and the new DNV-OS-E406  for  freefall  lifeboats.  The  Norwegian  Shipowners’  

Association (NR) has performed studies of the issues related to davit launch lifeboats. The 

NR work has resulted in recommendations for improved competence, training and 

maintenance [76].  

For operation in the Barents Sea, keeping the lifeboats and release mechanisms free of snow 

and ice in order to ensure launching is of particular concern [43 & J08]. Ice accretion on 

lifeboats in the sea is also of concern [65]. These issues are discussed later in this report. 

Escape chutes and life rafts have a limited operational window [40]. They generally cannot be 

used in conditions over Beaufort 8. The prevailing conditions in the winter and a polar low 

would probably disqualify the use of escape chutes and life rafts in the Barents Sea for 

considerable periods of the year. The issue of protection from the cold will need to be looked 

into specifically for persons in a life raft. 

The performance of these evacuations is summarised in table 3 below. 

Table 3, Performance of evacuation means defined by Beaufort scale [40] 
Type of evacuation means Documented performance Uncertain performance 
Davit launched life rafts In Beaufort 6 In Beaufort 8 
Escape chute In Beaufort 6 In Beaufort 8 
Davit launched lifeboats In Beaufort 7 In Beaufort 10 
Free fall lifeboats In Beaufort 12 In Beaufort 12 

 

Immersion suits 

Personal survival suits are required for all persons working on a facility, cf. Facility 

Regulation § 45, Survival suits and life jackets [12]. A new immersion suit, Hansen 
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Protection SeaAir suit, was developed and taken in use in 2007/2008 for helicopter transport 

and offshore survival.  

Entry into the water during winter should be avoided as far as possible especially in 

temperature conditions where the air temperature is below 0C and the sea temperature is low. 

In the Barents Sea high priority should be given to dry escape. The main functions of an 

immersion suit are to protect against initial cold shock, provide a breathing system for escape 

from a helicopter in the sea, keep the person afloat, warm and dry, protect from hypothermia 

and drowning and ensure that the person retains mobility and dexterity, the use of limbs, 

hands and fingers so that they can take care of themselves [58]. 

The Norwegian petroleum industry represented by Eni Norge, Total, Nexen and Dong ran a 

project with SINTEF in 2010/2011 to evaluate the suitability of the SeaAir suit for use in the 

Barents Sea [84]. The project identified areas that need improvement i.e., better protection of 

hands and feet and improved functionality of the spray hood and the buddy line [59]. Eni has 

later initiated a new project to develop an improved survival suit for the Barents Sea based on 

recommendations and findings in the 2010 project [85]. SINTEF has granted permission to 

disclose the following information from the reports that are referenced in this thesis [86]. 

Survival suits are normally tested according to ISO 15027-3:2002 Immersion suits, Part 3: 

Test methods [16]. This standard requires a water temperature below 2°C and an air 

temperature below 10 °C. There is no requirement for wind, waves or overflowing of water 

during the test. The tests performed by SINTEF in 2010 involved wind, waves, overflowing 

of water, lower air and water temperature [59]. The water temperature was ca. -0,1°C and the 

air temperature ca. -11°C. Ice accretion on the spray hood, difficulty using the buddy line and 

cooling of fingers and toes were experienced during the tests. One person completed the full 

three hour duration time for the test while 4 persons did not. Mean core temperature did not 

fall more than 0,5°C indicating that no one became hypothermic during the test. The cooling 

of hands, fingers and feet are not critical for hypothermia but may impair the person’s  ability  

to take care of them self and assist in their own rescue. The project made the following 

recommendations [59]: 

 An extra layer of woollen underclothing should be worn or improve suit insulation,  

 Improve protection of hands and feet, 

 Improve functionality at low temperatures for the spray hood and the buddy line. 
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Medical evacuation – MEDEVAC 

Medical evacuation of sick or injured personnel  is  termed  “medevac”  and  is  a  special case of 

evacuation usually involving a small number of persons, most often only one. This is 

normally an unplanned activity, and the need can arise at any time of day or night. Decisions, 

based on the nature of the case, are made by a duty doctor regarding the urgency and need for 

a medevac operation. The safety related to flying conditions and the urgency of performing 

the operation may need to be balanced against the consequences of postponing or cancelling a 

medevac flight.  

Ambulance and SAR missions in the Barents Sea are challenging due to long distances, 

severe weather conditions, and periods of arctic winter darkness. Missions with the Sea King 

SAR helicopter stationed at Banak have been performed with high regularity and in most 

cases the missions were rational when considering medical gain and operative risk [57]. 

For medical evacuation of injured of sick persons it is normal to set minimum requirements 

for capacity and response time for the means of evacuation, i.e. helicopter [20]. 

5.4.2 Rescue 

Once lifeboats or life rafts have been launched and are outside of the hazard zone, the issue of 

rescuing survivors is paramount. Personnel onboard intact lifeboats or life rafts are considered 

to be in a safe situation. Studies show, however, that a person may become apathetic or 

willing to take large risks in order to get away from the survival craft. Injured persons can be 

rescued by helicopter provided the operation can be performed without injury to personnel. 

Transfer of uninjured personnel to an emergency response vessel (ERV) should not be 

attempted before the sea is sufficiently calm [40 p113].  

Table 4, Mean and maximum duration of wind conditions [40] 
Beaufort Mean duration (hours) Maximum duration (hours) 

6 20 to 25  
7 15 60 
8 12 30 

9, 10, 11 8 to 10  

In connection with an evacuation and rescue operation it is of interest to consider how long a 

harsh weather condition may last. An indication is presented in table 4 above. The data are 

based on information from the North Sea and the Norwegian Sea. We can deduce from the 

data that the duration decreases as the intensity of the weather increases. It is necessary that 
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the lifeboat be equipped to sustain life for the duration of the harsh weather period at the 

location of an evacuation [40 p113]. 

If a helicopter or rescue vessel is unable to operate under the prevailing conditions, the 

survivors will have to ride out the weather and wait for an operational window that allows 

rescue. The time required to ride out a particular condition will depend on how severe the 

weather is and how long it is since it started. It is therefore relevant to study the effects of 

icing on a lifeboat during this time span. The performance of various rescue means is given in 

table 5 below. The information regarding the rapid response rescue vessel is new information 

that is added to the table. 

Table 5, Performance of rescue means defined by Beaufort scale [40] 
Type of rescue means Documented performance Uncertain performance 
Rescue basket In Beaufort 5 In Beaufort 7 
Rescue zone with net In Beaufort 6 In Beaufort 8 
Dacon scoop In Beaufort 6 In Beaufort 8 
MOB boat In Beaufort 6 In Beaufort 8 
Sealift In Beaufort 7 In Beaufort 11 
Fast recovery craft In Beaufort 8 In Beaufort 11 
Rapid response rescue vessels In Beaufort 9  
Helicopter In Beaufort 10 In Beaufort 12 

 

Helicopter rescue 

The preferred and most common means of rescue of persons is performed by helicopter. The 

petroleum industry operates a number of search and rescue (SAR) helicopters that are 

generally manned by ex servicemen from military operated SAR services. Many of the crew 

had been trained and served in the Royal Norwegian Air Force 330 squadron [J07].  

Rescue crews on SAR helicopters report that night vision goggles (NVG) combined with 

infrared light from a source on the helicopter is currently the best method for finding a person 

in the sea when it is dark. The combination of NVG and IR light is reported to be more 

effective than forward-looking infrared cameras/radar (FLIR) [J02]. 

Emergency response vessel 

Custom designed third generation rapid response rescue vessels or emergency response 

vessels (ERV) are now available [103 & 104]. They are specially designed to launch and 

recover a fast recovery daughter craft (FRDC) or man overboard (MOB) boat from a slipway 

in the stern. The slipway can also be used to recover a lifeboat from the sea. An operator of 
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these vessels has experience in the use of the slipway in sea conditions up to 11 to 12 m 

waves [J03].  

Rescue to conventional standby vessels requires the use of lifting equipment or the transfer of 

persons from the lifeboat to the standby vessel by a MOB boat, potentially limited to Beaufort 

6, or FRDC limited to operate in conditions up to Beaufort 9 [40]. Due to these limitations, 

there is therefore a good reason to consider the possibility of survivors in a lifeboat having to 

ride off weather conditions.  

In case of ice accretion on an ERV, the captain must know when the vessel is no longer safe. 

Lifeboats may be expected to ride out a storm with icing conditions and the ERV must be able 

to do the same [65].  

FRDCs are designed to travel at high speed, typically 35 knots, and have a rescue capacity of 

21 persons [105]. They are normally between 10 and 13 meters and are equipped with an 

enclosed wheelhouse. Some production facilities and ERVs are equipped with FRDCs. MOB 

boats are smaller than an FRDC and do not have an enclosed wheelhouse. MOB boats are 

also designed to travel at high speed and typically have a rescue capacity of 7 to 10 persons 

[105 & 107]. Most facilities and all ERVs are equipped with a MOB boat. 

5.5 Barents Sea concerns as identified by others 
Barents 2020 Work Group 4, Escape, Evacuation and Rescue (EER) 

The Barents 2020 project has considered the entire Barents Sea and identified a wide range of 

issues pertinent to emergency preparedness. A wide range of conditions have been considered 

and it is recommended that evacuation and rescue systems must be capable of operation in ice 

or open water situations as well as being prepared for many other environmental and logistical 

factors. The major risks and concerns that were identified by the work group include the 

following [47 p140]:  

 Traditional EER methods may not be appropriate at certain times of the year 

 Ice conditions, icebergs and sea ice, cold weather, wind and other weather conditions 

 Lack of logistics systems and emergency response vessels to support evacuation  

 Long distances from the potential emergency site to the support bases and other facilities  

 Shortage of appropriately equipped vessels that may be called on for assistance  

 Accumulation of ice on external surfaces and its effect on the operation of equipment 

 Limited amount of time available to react to a particular emergency situation 
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 Effect of cold on human physiology and psychology, equipment, and materials 

 Lack of experienced personnel and training facilities for evacuation systems which have 

been proposed for the Barents Sea 

 Effect of the polar night and extended periods of darkness on personnel  

 Communication difficulties due to magnetic conditions, lack of satellite coverage and 

language differences 

 Possible lack of qualified medical help  

The importance of these risks for any particular facility will depend on the type of facility, 

function, location and distance from the rescue bases and rescue resources. The risks will be 

an integral part of the overall risk assessment and emergency preparedness plan for the 

installation.  

Technology and Operational Challenges for the High North 

The Petroleum Safety Authority (PSA) commissioned the University in Stavanger (UIS) and 

International Research Institute of Stavanger (IRIS) with a project to gain an overview of the 

technology and operational challenges for the High North as seen from the viewpoint of the 

Petroleum industry. The final report was published in 2011. Important issues influencing 

emergency preparedness and rescue and are listed below [42]: 

 A new regime for emergency preparedness and rescue is required defining the additional 

requirements for remote EER capability taking into account such factors as distance from 

permanent services and existing infrastructure, time to mobilise, challenging weather 

conditions and appropriate evacuation and rescue methods. 

 Ice accretion due to precipitation or sea spray may cause problems on facilities by 

increasing weight, making critical equipment inaccessible or unworkable and damage 

caused by falling ice. The prediction of icing and methods for preventing or limiting arctic 

icing need to be addressed. 

 Remote locations and activity far from land may be outside the reach of helicopters leading 

to challenges for logistics, emergency preparedness and rescue.  

 Lifeboats for the safe evacuation of personnel from facilities operating in areas where there 

is a possibility for occurrence of sea ice.  

 Weather conditions in the Barents Sea represent a potential risk impact to safe operation. 

The development of knowledge and technology targeting these issues is necessary to 
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reduce uncertainty and facilitate adaptation to the environment and leading to safer 

operations.  

5.6 Barents Sea Climate 
There are numerous sources of information regarding the climate of the Arctic. The main 

sources used in this report are ISO 19906:2010(E) [14], and Norsok N-003 Edition 2, 

September 2007 [19].  In addition, course material (Gudmestad, O.T. 2009) is taken into 

account and used as background information.  The area of the Barents Sea opened for 

Norwegian petroleum activity corresponds to the southern half of area 1, Western Region in 

ISO 19906 [14]. This area is described as having a winter climate all year. The following 

climatic issues have been identified as pertinent to operations in the Barents Sea. 

5.6.1 Air temperature 

The maximum average air temperature is +4,4 C with the annual range between +2,0 to +7,0. 

The maximum air temperature that can be expected in the southwest, near Goliat and Snøhvit, 

is in the range of 20C to 25C. Towards the north and east, the maximum temperature 

decreases to the range of 15C to 20C.  

The minimum average air temperature is -7,7 C with an annual range between -6,0 to -9,0. 

The minimum air temperatures that can be expected in the southwest are in the range of -15C 

to -20C. Towards the north and east, the temperatures decrease to the range of -20C to -

30C [14 & 19]. The minimum air temperatures are shown in figure 11 [19]. 

 
Figure 11, Lowest air temperature with an annual probability greater than 10-2 [19] 
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5.6.2 Sea temperature 
The maximum average sea temperature is +7,0 C with the annual range between +5,0 to 

+9,0. The maximum sea temperatures that can be expected in the southwest are in the range 

of 10C to 12,5C. Moving towards the north and east, the maximum temperatures decrease 

to the range of 5C to 10C. The minimum sea temperature that can be expected in the 

southwest is in the range of +2C to +4C. Towards the north and east, minimum 

temperatures decrease to the range of +2C to -2C [14 & 19]. Minimum sea temperatures are 

shown in figure 12. 

At Bjørnøya the yearly average sea water temperature is 0,84°C. The average for the winter 

months, January, February and March is -1,46 °C. The average for the summer months, July, 

August and September, is 3,43°C [51]. 

 
Figure 12, Lowest sea surface temperature with an annual probability greater than 10-2 [19] 

5.6.3 Visibility 
Visibility can be impaired by fog, rain and snowfall. Statistically this can occur for a large 

number of days during the year. Typically there are 64 days per year with visibility below 

2km due to snow and 76 days per year with visibility below 1km due to fog [14]. Measures 

have been taken to establish internationally agreed fixed shipping lanes lying 30 NM off the 

coast from the Russian border to Røst, thereby reducing the probability of collision with 

passing ships. Fog and snowfall that impairs visibility will be an operational issue reducing 

the availability of helicopter transport and potentially disturbing operation of supply vessels 

in close proximity to the facility. Severe fog conditions can hinder helicopters performing 

medical evacuation, precautionary evacuation or rescue operations [68]. 
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At Fruholmen, the horizontal visibility is less than 1000m for 1,51% of the year and less than 

10000m for 6,76% of the year. At Bjørnøya the horizontal visibility is less than 1000m 8,58% 

of the year and less than 10000m 31,76% of the year. These statistics reflect the relative high 

occurrence of fog in the vicinity of Bjørnøya [51]. 

5.6.4 Sea conditions 
The maximum significant wave height that can be expected in the southwest is 15 m 

decreasing to 14 m when moving to the north and the east as shown in figure 13 below. 

Storms can create violent sea and wave conditions disrupting activities and hinder evacuation 

or survival on the sea [19]. The  Norwegian  Meteorological  Institute’s  data  for  the  Barents  sea  

indicates that significant wave height Hs is greater than 5 meters in 4,6% of the year in the 

east (72.58°N, 33.10°E) and 6,61% of the year in the south west (71.58°N, 19.53°E), 

predominantly in the period October to March [51].  

 
Figure 13, Significant wave height Hs with annual probability greater than 10-2 for sea-states 

of 3 hour duration [19] 

5.6.5 Wind  
The 10 minutes average maximum wind speed at 10 m above sea level is 26,6 m/s with the 

annual range of 25 m/s to 28 m/s. The dominant wind direction during the summer is from the 

west. The dominant wind direction during the winter is from the northeast. Extreme wind 

speeds can occur during polar low and polar front conditions [14]. 
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At Fruholmen Fyr, a lighthouse north of Hammerfest, The yearly average wind speed is 13,79 

m/s at 10 m above ground level. The average for the winter months is ca 2 m/s higher, the 

average for the summer months is ca 2 m/s lower [51]. 

At Bjørnøya, the yearly average wind speed is 12,19 m/s at 10 m above ground level. The 

average for the winter months is ca 2 m/s higher, the average for the summer months is ca 2 

m/s lower [51]. 

5.6.6 Polar Lows 
Polar lows are weather phenomena that are well known from the Norwegian and Barents Sea. 

The storm or polar low occurs in the season from autumn to winter with a frequency of 2 to 4 

per month. Polar lows are a potential threat to all activity in the Barents Sea due to their 

nature and suddenness with which they develop [66 & 69]. 

Polar lows develop in a short space of time and have a short lifespan. Typically, polar lows 

have durations of 6 to 48 hours. They develop swiftly when cold wind blows from the ice 

covered regions in the north over areas with relatively warm sea. The storm dies or dissipates 

when it moves over land because the driving force, the warm sea, no longer provides the 

energy to sustain the wind system. A polar low has a typical diameter of ca. 100 to 500 km 

making it a relatively small weather system. Typically, a polar low can travel at ca. 15 to 25 

knots with the highest observed speed of 52 knots. Winds speeds are typically up to Beaufort 

force 10 or storm with wind speeds up to 28,4 m/s. Hurricane wind speeds have been 

observed but are more seldom [69]. 

The wind is strongest to the west of the centre. The wind decreases in speed to the east of the 

centre. It is not uncommon that the polar low is accompanied by heavy snowfall. The strong 

and variable winds can create chaotic conditions on the sea even though there is not enough 

fetch to build up very large waves. The combination of wind, snow and sea spray can increase 

the danger of icing on vessels and structures [69]. 

Polar lows are difficult to forecast due to their rapid movement from the ice edge and the fact 

that there are few meteorological observation stations in the Barents Sea. Satellite 

surveillance is necessary to provide reliable forecasts. The coverage provided by satellites is 

currently not on a full 24 hours basis because the polar orbit only brings the satellite over the 

area for a limited period each day. 
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The International Polar Year (IPY) Thorpex research project has led to an increased 

understanding of the conditions that must be in place for a polar low to develop. There are 

improved forecasts available for where and when the basic conditions are in place thereby 

warning of a possible occurrence of a polar low. However, it is still not possible to predict 

exactly where or when a polar low will develop, only the probability of occurrence in an area. 

This may improve if there were more meteorological observations points available for the 

Barents Sea. 

For helicopter operations, polar lows are avoided as far as their whereabouts are known or 

they are detected. Polar lows and weather cells can be detected by weather radar. A route will 

be chosen around the polar low rather than flying through it. The Sea King pilots have, 

however, experience of flying through polar lows. Polar lows are not large in extent but have 

significant air pressure drops, e.g. 20 mbar may be observed. The duration of a flight through 

a polar low can be from 30 to 45 minutes during which time a wind shift of 180 degrees can 

be expected. A route around will be selected dependent on the nature of the mission, status of 

the casualty and fuel availability [J02]. 

Noer and Lien have made a report on the polar lows that have been observed from 2000 to 

2010 [52]. The report covers the area from the east coast of Greenland to Novaya Zemlja and 

from 65N to the Arctic ice edge and has registered 139 polar lows in the 11 winter seasons. 

The map in figure 14 only shows the area of interest in this thesis. There are 44 occurrences 

during the 11 years suggesting an average frequency of ca. 4 per year for the area being 

evaluated. 

 
Figure 14, Polar lows registered in the Barents Sea from 2000 to 2010 [52] 
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An occurrence of a polar low using observed weather data is illustrated in figure 15 below. 

The actual observations are taken from eklima [90]. The red circles indicate 50 km and 250 

km distances from the centre, respectively. There is no information available on the size of 

the polar low in question. From the observations plotted on the map it appears as though the 

accompanying winds have reached the coast of Norway and demonstrate a typical wind 

pattern shown with the red arrows. The observations confirm stronger winds to the west of the 

centre and an anti clockwise rotation of the storm. The numbers next to the observation points 

indicate the wind direction, the wind speed and gust in m/s. The observed wind speeds are 

within the limits for helicopter traffic and evacuation or rescue could be performed during this 

storm. 

 
Figure 15, Observation of a polar low 7th January 2009 [52 & 90] 

5.6.7 Sea ice and icebergs 
The seawater in the Barents Sea will freeze when the water has a temperature between -1,7C 

to -1,9C dependent on the salinity of the water. Sea ice with a return frequency of 100 years 

normally only occurs north of 73N and to the east of 31E. The return frequency for sea ice 

increases to ca. 10 years at 74N and 33E. It is interesting to note that the area now 

acquired for exploration due to resolving the border issue with Russia, has a greater 

probability for sea ice than the areas that are currently opened for activity  [14 & 19]. Several 

large icebergs have been observed south of 74N and on the coast of northern Norway during 

1881 and 1929 [46, 49 & 50]. 
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The map in figure 16 below contains information from 3 sources. The solid lines to the 

left/west indicate the annual probability of sea ice (light blue) and icebergs (black) as given in 

Norsok N-003 [19]. The solid lines to the right/east indicate the probability of sea ice (blue) 

and are based on work by Zubakin et.al. [48 p8]. The blue dashed lines at the top/north 

indicate the probability of sea ice as given in the Barents 2020 Phase 1 report [46 p14]. 

Although the Norwegian area currently opened for exploration is considered an ice-free area, 

developments will need to consider actions of sea ice and icebergs for design loads in order to 

meet the acceptance criteria of 10-4 [77]. Similarly it is of importance to consider sea ice and 

icebergs when developing operation strategies for structures, vessels and evacuations means 

that will be employed in the area north of 72,5°N or east of 30°E. This could mean that 

production units should be considered designed for disconnection in the event of icebergs 

[64].  

 
Figure 16, Probability of sea ice and icebergs, annual probability [19, 46 & 48]  

The legend is described in the text below. 

5.6.8 Summary of main meteorological features 
A summary of the main meteorological characteristics of the Barents Sea is shown on the map 

in figure 17 below. In general it can be said that the wind and waves decrease when moving 

east while air and sea temperatures and the probability of sea ice increase when moving 

towards the north east. 
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Figure 17, Summary of the main meteorological features of the Barents Sea 

5.6.9 Barents Sea Climate – The Future 
Successful evacuation and rescue are dependent on the weather conditions at the time of the 

incident. It is therefore relevant to study the effects of climate change for conditions in the 

Barents Sea. What changes can be expected? Is there a danger in being "optimistic" about the 

reduction of ice coverage in the Arctic? Installations can typically have a life span of 10 to 40 

years or longer depending on the size of the reservoir. From a discovery is made until a field 

is in production, there is typically a time span of 5 to 10 years.  For fields that are found and 

not yet developed, or that may be found within the coming years, decisions need to be made 

about climatic conditions that directly affect both operational and design parameters for a 

period stretching from today and maybe 50 years into the future. Reliable predictions of 

meteorological conditions, prudence, caution and possibly conservatism, are of the utmost 

importance in order to avoid premature decommissioning of facilities.  

The Norwegian Polar Institute has published a report that has studied meteorological 

conditions for the period from 1900 to 2100. Based on historic data and climate models a 

forecast has been created for the years ahead of us. There is a degree of discrepancy between 

the results given by the models and it is important to be conscious of the uncertainty this leads 

to in predictions for the future of the climate [54]. The following is an interpretation of the 

results presented in the report for the Barents Sea area: 

 Temperature for the area is expected to rise between ~2 to 4 °C in the autumn and 

winter, with a greater increase over land than the sea.  
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 The frequency of strong wind is expected to increase while the occurrence of polar 

lows is expected to decrease.  

 Precipitation is expected to increase but the season with snow is expected to become 

shorter.  

 The intensity of waves is not expected to change significantly for areas that are 

already ice free. An increase in significant wave height Hs is predicted from ~2 - 4% 

with an extreme wave height Hextreme increasing by ~2%. The changes can be higher in 

areas where sea ice recedes. 

5.7 Other specific features of the Barents Sea 

5.7.1 Icing on vessels 
Ice accretion on vessels may threaten the stability of the vessel and in the worst case lead to 

capsizing [65]. Weather conditions leading to icing on equipment may jeopardise 

functionality e.g. launching equipment for lifeboats [43] or the function of radar equipment. 

Climate conditions in the Barents Sea are such that icing on vessels and equipment can 

normally occur from October to May.  

There are two types of icing that need to be taken into consideration for the Barents Sea, 

atmospheric and sea spray icing. Atmospheric icing occurs in conjunction with low air 

temperature and precipitation. This form of icing normally leads to smaller amounts of ice 

developing on structures than sea spray ice accretion. Atmospheric ice has normally a higher 

density than sea spray ice [5 p191]. Ice accretion caused by sea spray is discussed in this 

section, as this is the dominant source of ice on structures and vessels.  

Sea spray icing is dependent mainly on the following parameters [5 p192]: 

 Air temperature: as the air temperature decreases below the freezing point of seawater, 

ice will be deposited if sea spray occurs. 

 Wind speed: increasing wind speed leads to more sea spray and more water in the air to 

freeze onto the vessel. Beaufort force 6, equivalent to 10,8 m/s, is normally considered as 

the minimum wind speed for ice accretion to start. 

 Sea surface temperature: as the sea surface temperature decreases towards the freezing 

point, icing will increase as there is less energy that needs to be removed from the sea 

spray. Seawater normally freezes at -1,9C in the Barents Sea. The freezing point is 
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determined by the salinity of the water and less salt in the water leads to a higher freezing 

point. 

 Sea state: as the sea state gets more severe, the wind increases and drives waves that can 

release sea spray either when breaking or when a vessel sails into the waves. Beaufort 

force 6 corresponds to waves of Hs=3m with maximum waves of 4m. 

 Size and type of structure or vessel: ice accretion due to sea spray does not normally 

occur over 25m above sea level. Sea spray is generally not carried higher than 25m.  

 Course relative to the waves and speed: the amount of sea spray developed is a direct 

result of the speed of the vessel and the angle that the vessels heads into the waves. 

Decreasing speed and optimising the vessel heading into the waves can reduce icing. 

A formula has been developed to predict the rate of ice accretion due to sea spray [5 p197]. 

The formula takes into account the wind speed (Ua), the freezing point of seawater (Tf), the 

sea surface temperature (Tw) and the air temperature (Ta). The National Oceanic and 

Atmospheric Administration (NOAA) have developed the ice accretion predictor (PR).  

PR = Ua(Tf-Ta)/(1+0,4(Tw-Tf)) 

Table 6 below illustrates the relationship between the icing predictor (PR) and the rate at 

which ice can be expected to grow given in cm per hour. 

Table 6, Relationship between icing predictor and rate of ice growth [5 p197] 
 Light Moderate Heavy Extreme 

Icing rate cm/hr < 0.7 0.7 to 2.0 > 2.0 > 5.0 
Predictor < 20.6 20.6 to 45.2 > 45.2 > 70 

Figure 18 below illustrates the relationship between two parameters that are used in the ice 

accretion predictor. The wind speed in the chart corresponds to the lower limit for Beaufort 

force 6 to 12, i.e. fresh breeze to hurricane. A fixed air temperature of -10ºC is used to 

illustrate the effect of decreasing air temperatures. It can be seen that the predictor increases 

dramatically as the seawater temperature approaches the freezing point.  The value of the 

yellow, orange and red horizontal lines in figure 18 is used to denote an ice growth rate of 

0,7cm/h, 2cm/h and 5cm/h respectively. 
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Figure 18, Icing index as a function of seawater temperature (Tw) and the wind speed (Ua) at 

a fixed air temperature of -10 °C. 

5.7.2 Icing on aircraft 
The Norwegian Meteorological Institute (DNMI) has made a study concerning the statistical 

probability of ice accretion on aircraft on routes between northern Norway and Svalbard [53]. 

The results of the report indicate that there is approximately a 50% probability for icing 

conditions on aircraft from November to May. This is shown in a table in appendix A.5. 

Clouds containing water droplets may lead to ice accretion on aircraft if the air temperature is 

0°C or less. The amount of droplets and their size is greatest at temperatures just below 0°C 

and it is in these conditions that most severe ice accretion is likely to occur. Two cloud 

structures are considered. Stratiform cloud structures are clouds that are flat but have a large 

horizontal extent. Cumuliform cloud structures have a larger vertical extent and are more 

common with severe weather. There are generally large droplets in cumuliform clouds that 

can lead to rapid ice accretion. Stratiform clouds normally contain smaller droplets but can 

also lead to rapid ice accretion as the extent of these clouds expose the aircraft to icing 

conditions for a longer period [53]. 

Rain at temperatures below 0°C can also lead to ice accretion on aircraft.  Freezing rain 

occurs when the water droplets pass through a layer of air below 0°C. Temperatures normally 

increase with decreasing altitude. Snow does not normally lead to ice accretion on aircraft 

because the water is already frozen. However, if the snow contains water, ice accretion may 

occur [53]. 
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5.7.3 Darkness 
The sun is below the horizon all day for a given period during the winter. This results in total 

darkness, called Polar Night, in the middle of the winter. There are limited periods of twilight 

during the day until the sun returns. The length of the daylight period decreases rapidly from 

the autumn equinox until the sun goes below the horizon. Similarly the daylight period 

increases rapidly from the return of the sun until the spring equinox [91].  

Table 7, Dates for the sun below the horizon [91] 
Location Sun leaves Sun returns 
Vardø 23. November 19. January 
Hammerfest (Fruholmen) 22. November 20. January 
Nordkapp 20. November 22. January 
Bjørnøya 07. November 04. February 
Longyearbyen 26. October 16. February 
North Pole 25. September 18. March 

5.7.4 Weather forecasting  
Reliable weather forecasting is paramount for safe operations and activities at sea. 

Meteorological observations are made at locations on the coast of Northern Norway, 

Bjørnøya, Hopen and Svalbard. Due to the low number of fixed observation stations in and 

around the Barents Sea, reliable weather forecasts are challenging, especially with regard to 

forecasting polar lows. As petroleum resources are developed in this area, valuable 

information will be gained through new observation stations on the offshore facilities [67]. 

Currently, forecasting accuracy is being improved by comparing the meteorological 

observations on rigs operating in the Barents Sea with the given forecast for the period [J08]. 

5.7.5 Radio communication at high latitudes 
Challenges regarding radio communications at high latitudes are often mentioned in 

connection with the Barents Sea. Satellite communication systems using geostationary 

satellites at the equator do not guarantee coverage north of ca 70°N. The systems may provide 

communication with good antennas up to 76°N but not beyond 80°N [101]. Geomagnetic 

storms can have an adverse effect on certain types of radio communication, potentially 

leading to a total loss of communication at times. In interviews with persons who are familiar 

with operations in the Barents Sea, these issues are not considered as a threat to effective 

radio communication as they have a variety of systems. Radio communication is generally 

better in summer during periods of high air pressure than is experienced in winter during low 

air pressure [J01, J02 & J04]. 
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5.8 Infrastructure, Facilities and Resources 
Petroleum facilities 

There are currently no fixed or floating installations in the Norwegian sector of the Barents 

Sea. The Snøhvit field was developed in 2002 with subsea installations connected by pipeline 

to an onshore LNG plant at Melkøya near Hammerfest [33 p63]. The Goliat FPSO is planned 

installed in 2013 [33 p7]. Skrugard will be developed and a facility installed in 2018 [77]. 

There are occasionally drilling facilities in the area dependent on exploration and production 

drilling activity. 

Supply bases 

Activity is currently supported from the supply base at Hammerfest [33]. Kirkenes 

municipality has an ambition to become an important base for petroleum related activities 

both in the Norwegian and Russian sector of the Barents Sea [81]. 

Maritime resources 

There is a presence of a variety of vessels due to fisheries, naval activity, maritime tanker and 

bulk transport, cruise tourism, marine bio prospecting and research activity related to 

gathering of seismic data [33 p7&8]. 

Search and rescue resources 

The main search and rescue resources in northern Norway covering the Barents Sea are 

helicopters, Coast Guard vessels and vessels operated by Norwegian Sea Rescue (NSSR). The 

Norwegian   navy’s   coast   guard vessels may have helicopters onboard [J01]. There is a Sea 

King helicopter (SAR) stationed at Banak in Finnmark operated by the Royal Norwegian Air 

Force [J02]. When there is exploration, development or well maintenance activity in the 

Barents Sea, the petroleum industry operates a transport helicopter and an all weather search 

and rescue (AWSAR) helicopter from Hammerfest [74]. 

Resources to assist in accidents at sea and rescue operations in Northern Norway and the 

Barents Sea are limited. Persons, who are familiar with the capacity and availability of the 

resources, have expressed concern regarding the issue [J01, J02 & 102]. There are large 

distances and transport of survivors and injured persons may be time consuming. There may 

be serious challenges rescuing, transporting and providing medical treatment for 80 to 140 

survivors of an accident on an offshore petroleum facility in the Barents Sea. This insight 

raises an additional concern regarding the rescue of potentially thousands of passengers and 
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crew on cruise ships operating in the Barents Sea between Northern Norway and Svalbard. 

The accident off the west coast of Svalbard with the Russian cruise ship, Maxim Gorkij on the 

17th September 1989 involving 575 passengers and 378 crew, could have ended very 

differently. All persons were rescued due to fortunate coincidences regarding the proximity of 

a Norwegian Coat Guard vessel and access to rescue helicopters [101].  

Medical resources, hospitals 

There are hospitals in Hammerfest and Kirkenes providing health services to the inhabitants 

of the county of Finnmark. The University Hospital of Tromsø is the largest hospital in the 

region and is located in the county of Troms. Remote medical diagnostics, telemedicine, is 

provided from the University Hospital of Tromsø. There is a national centre for this type of 

medical care and support in Tromsø, the Norwegian Centre for Integrated Care and 

Telemedicine. An extensive air ambulance service is operated from Tromsø. If it should 

become necessary to treat a large number of injured persons the combined resources of 

Hammerfest, Kirkenes and Tromsø hospitals could be used with Tromsø dealing with the 

more serious injuries. It has not been possible to find quantified information regarding the 

trauma capacity, number of persons who can be treated in connection with a serious accident, 

for these medical facilities [82]. Traditionally it has been seen that in the case of serious 

accidents involving many injured persons, the rescue and medical services stretch themselves 

beyond what could be expected as their normal duty and provide the assistance that is 

required to save many lives. An example is the bus accident in Lavangsdalen in 2011 [99]. 

Airports 

There are numerous airports in the county of Finnmark, most of these are located on the coast 

and are shown in figure 19 below. Helicopter flights to facilities in the Barents Sea are 

currently operated from Hammerfest. The red circle indicates 1 hours flying time, 140 NM, 

from Hammerfest. The 330 squadron Sea King SAR helicopter is stationed at Banak. Tromsø 

in the neighbouring county is also indicated on the map, as this is where the largest hospital is 

situated. Bjørnøya is not an airport for regular traffic but helicopter traffic can be served. 

Some of the airports along the coast may be of interest as alternative or emergency airports 

for petroleum related activities. They are all close to the coast and for some areas of the 

Barents Sea provide a shorter flight than can be achieved from Hammerfest. The airports at 

Hammerfest, Honningsvåg (HVG), Mehamn (MEH), Berlevåg (BVG), Båtsfjord (BJF) and 

Vardø (VAW) have fuel and 24/7 callout for fire fighting services allowing hot refuelling of 
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the helicopter with the rotor running. There are also fuel depots at Bjørnøya and Hopen 

(beyond the top of the map), however, it can be challenging to land there due to fog. Bjørnøya 

is at present used as an intermediate base during rescue operations in that area [57 & J02]. 

 
Figure 19, Airports on the coast of the Barents Sea 

The smaller airports suffer from a lack of local infrastructure and investment would be 

required if any permanent use for helicopter transport to facilities in the Barents Sea is to be 

regular. A number of these airports experience difficult conditions related to traffic, especially 

for fixed wing aircraft, and regularity is lower than for other airports in Norway [J02]. Fog 

can also be a challenge to regularity at airports in coastal areas.  

5.9 Helicopter operations 
Helicopters are vital to transport of personnel to and from facilities operating on the 

Norwegian continental shelf. Considerable work has been invested in continuous safety 

improvement of helicopter operations. The safety status of helicopter operations has been 

documented and studied in three helicopter safety studies performed by SINTEF on behalf of 

the stakeholders in the industry. The overall objective of the studies has been to contribute to 

improved safety in helicopter transport of personnel. From the most recent report, the 

recommendations and observations that may have an effect on helicopter safety in the Barents 

Sea, are listed below [62 sect10]: 

 Reduce flights at night, in the dark or in conditions of reduced visibility especially to 

moving helicopter decks. 
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 Continuation and replacement of the system used to track helicopters at all times 

during flight.  

 Requirements for improved weather observations especially on remotely located 

facilities. 

 Requirements for a hangar on offshore facilities where SAR helicopters are stationed 

in order to improve safety of operation.  

 The provision of night vision goggles for SAR crews. 

 The unique Norwegian requirement of 25% increase in helicopter deck size has been a 

clear improvement to safety [62 p41]. 

The effect of darkness on helicopter operations 

Reduction of flights at night or in the dark is a special challenge in the Barents Sea as the 

months from November to January are predominantly dark almost all of the time. Helicopters 

are equipped with navigational aids and radar enabling operations in the dark or reduced 

visibility. The SINTEF report draws attention to the importance of good visibility especially 

when landing on helicopter decks affected by the motion of the sea. The risks connected with 

landing at night or in the dark are emphasized in particular [62 p92&148]. In order to reduce 

the risks during landing of helicopters on offshore facilities, especially as activity moves 

north into the Norwegian Sea and the Barents Sea, a regulation was unilaterally implemented 

in Norway requiring that the diameter of new helicopter decks be 25% greater than previously 

required [62 p41]. 

Weather forecasts for helicopter operations 

Weather forecasting is a critical element for aviation. Operations depend on reliable and 

detailed weather forecasts in order to plan and execute a safe flight. This is especially the case 

for helicopters that are slow moving aircraft operating at low altitudes in the most turbulent 

part of the atmosphere [73]. Quality forecasts require reliable observations that can be used in 

the forecasting models.  

Helicopter - operational limitations 

Limitations for helicopter operations are stipulated in OLF guidelines no. 066 and 095 [22 & 

23]. The amount of fuel a helicopter can carry is the deciding factor for the operational range. 

The fuel requirement is calculated based on the requirement to be able to fly to the 

destination, perform an approach and be able to return to the original or an alternate airport 

onshore and still have sufficient fuel for 30 minutes flying time [73]. These requirements are 
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described in full in N-CAA regulation BSL D 2-2 [13]. Transport helicopters currently in use 

carry fuel for ca 3,5 hours flying. The required reserve of 30 minutes fuel is included. The 

OLF guideline 066 sets an additional requirement that the alternate airport cannot be an 

offshore facility [22]. This limits the possibilities for long-range flights. The approximate 

range available today is 175 NM [73]. 

Alternative solutions to providing extra fuel include installing extra onboard fuel tank 

capacity, landing on an installation en route for refuelling or considering the use of HIFR, 

helicopter in flight refuelling. It is possible to increase the range by installing additional fuel 

tanks on the helicopter. This will, however, increase the weight of the helicopter, reduce the 

payload and may not prove economical to the operator [73]. Offshore facilities with fuel 

depots can increase the useful range of helicopter operations by providing refuelling. The 

helicopter will have to land on the helideck of the facility in order to refuel. Helicopter in 

flight refuelling (HIFR) equipment is available on some coastguard vessels. This system does 

not involve landing on the vessel. A fuel hose is hoisted from the vessel to the helicopter 

while in flight, connected to the helicopter and refuelling is performed. [J02] 

The following meteorological factors are critical for helicopter operations [22]: 

- Lightning or the probability of lightning in cumulonimbus clouds (CB) 
- Air turbulence, wind speed on the helideck 
- Icing, unless the helicopter is specifically equipped with de-icing equipment 
- Poor visibility, fog or dense snow 
- Wind speed that significantly reduces or cancels headway [J07]. 

In the worst case, lightning may lead to an accident and helicopter wreck [30 p48]. The pilots 

will normally fly around areas of lightning, turbulence or icing and may even decide not to fly 

under these conditions. SINTEF recommend research into issues concerning helicopters’ 

resistance to and survivability in lightning strikes [62 p144]. 

It has been observed that challenges related to weather conditions have become more 

significant as helicopter traffic has increased in the Norwegian Sea and the Barents Sea. In 

these areas polar lows develop with little warning and are accompanied by strong wind and 

large amounts of precipitation, often as snow. Although a polar low does not normally 

threaten the helicopter as such, it can be a challenge leading to reduced speed and increased 

air turbulence [J02]. Conditions are such that the helicopters are more exposed to icing, 

experience greater lightning activity during winter, observe stronger winds and longer hours 
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of darkness during the winter in the Norwegian Sea compared to the North Sea. It is important 

to remember that in petroleum activities the area that is referred to as the Barents Sea in the 

southwest is actually the Norwegian Sea [62 p17].  

Fuel requirements 

Refuelling on an offshore facility and HIFR has inherent limitations to helicopter operations. 

When relying on offshore refuelling using either of the methods, the helicopter must reach the 

refuelling facility before it has used more fuel than required to safely return to its starting 

airport or alternate airport with the required 30 minutes fuel reserve as there is no guarantee 

that the refuelling operation can be performed successfully. After successful refuelling, the 

helicopter shall not fly further than for it to be able to return to an airport without additional 

refuelling. This is because it cannot be guaranteed that a second refuelling operation will be 

possible or successful. It is therefore not permitted to plan a flight that requires taking on 

board fuel from a second HIFR operation [J02]. Similar restrictions will apply for refuelling 

onboard an offshore facility.  It should also be noted that HIFR is essentially a method used 

for military operations, typically the 330 Sea King rescue helicopter. HIFR is not considered a 

normal operation for civil helicopter transport. 

 

Figure 20, Extended flight range using offshore refuelling 

The illustration in figure 20 shows the implication of the operational limits described. 

Consider a helicopter that has a total range of 400 NM. It is necessary to plan a flight from 

airport S (starting point) to an offshore facility D (destination). The distance from S to D is ca 

300 NM. It is not possible for the helicopter to fly from S to D and return to either S or the 

alternate airport A with its normal fuel capacity. Refuelling on route either onboard an 

offshore facility or vessel equipped with HIFR will be necessary. The distance between S and 

F (and the distance F to A) must not exceed 200 NM miles as the helicopter must be able to 

return to S or A if refuelling at F is not accomplished. This situation means that the flight 
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from S to D is aborted. The distance from F to D must not exceed 100 NM as the helicopter 

must be able to fly 300 NM to either S or A without refuelling at D. In this situation the 

helicopter could fly back to F and attempt a second refuelling but only within a fuel regime 

that allows the helicopter to return to S or A if the second refuelling is unsuccessful. In 

addition one must consider the distance between S and A. If the helicopter flies the route D to 

S on the return and S becomes unavailable due to weather or other reasons, it must be 

possible to reroute to A and still have 30 minutes fuel when landing at A, the alternate airport. 

The useful range of the helicopter in this example can be increased from reaching a location 

200 NM from shore to ca 300 NM offshore for ideal conditions. This example illustrates that 

offshore refuelling may increase the range of a helicopter by ca 50%. 

Tracking of helicopters 

There is a requirement in Norway that helicopters shall be tracked at all times during flight to 

allow the immediate locating of the aircraft in the case of an accident. This greatly increases 

the probability of saving lives, as valuable time is not lost searching for the site of the 

incident. The system currently in use, Modified Automatic Dependent Surveillance (M-ADS), 

has become difficult to maintain due to the lack of new units and spare parts for existing 

equipment [62]. 

Limitations for rescue 

A limiting factor with regard to helicopter transport is related to the ability to rescue 

personnel in the event of a helicopter incident leading to persons in the sea. Where rescue is 

based on the use of SAR helicopters, the general rule is that helicopter transport of personnel 

shall not be carried out if the wind on the helicopter deck where the SAR helicopter is 

stationed exceeds 55 knots. This is due to the fact that the SAR helicopter rotor cannot be 

started when the wind is above 55 knots. The platform manager, together with the SAR 

captain, can deviate from this guideline if the local conditions allow a deviation [23 §3.5.1]. 

When rescue is based solely on an ERV with an FRDC or MOB boat, the general rule is that 

helicopter transport shall cease when the significant wave height Hs exceeds 4,5m. When the 

Hs is between 4,5m and 7m the platform manager and the ERV captain shall assess safety, 

efficiency and robustness of the rescue operation under the prevailing weather conditions [23 

§3.5.2]. 
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5.10 Calculations 
The shortest route between two locations and the heading between these locations are 

calculated in order to evaluate response time of emergency preparedness resources. The 

effects of the wind on the speed made good over the ground by a helicopter are also 

examined. The details of the methods used are described in the following sections. 

5.10.1 Great circle calculations 
In order to evaluate the time required for helicopter assisted medevac, evacuation and rescue 

operations it is necessary to calculate the distance between the locations. Great circle routes 

provide the shortest distance between to locations on the surface of the earth. The route is not 

necessarily a straight line on a map but it is the shortest distance. Also note that the heading 

along the route is not necessarily constant for the entire route. There are many ways of 

calculating the great circle distance. The accuracy of the result depends on the method chosen 

and how well the shape of the earth is taken into account. The earth is not a perfect spheroid 

and the radius at the equator is different from the radius at the poles.  

In 1975 Thaddeus Vincenty published a method for calculating great circle distances using an 

iterative calculation taking into account the ellipsoid shape of the earth [56]. The method 

provides very accurate results.  

A more traditional method within navigation is to use the Haversine formula to calculate 

distances [93]. This method is less accurate giving an error of up to 0,5% of the distance due 

to describing the earth as a spheroid. The Haversine formula provides a distance that is 

sufficiently accurate and the formula is easy to use in an Excel spreadsheet. The results of the 

calculations used in this thesis have been verified by using an Internet program based on the 

Vincenty method of great circle calculation [97].  

The haversine, or half the versine, is used in the haversine formula for navigation. The versine 

or  versed  sine,  versin(θ),  is  a  trigonometric function: 

versinθ = 1  −  cosθ = 2sin2(θ/2) 

haversineθ = (versinθ)/2 = (2sin2(θ/2))/2 = sin2(θ/2) 

The following calculation method has been used for distance and heading between locations. 

All angles and coordinates must be converted from degrees to radians before the calculation. 

An example of the practical use of these formulae is included in annex A.9. 

http://en.wikipedia.org/wiki/Haversine_formula
http://en.wikipedia.org/wiki/Trigonometric_function
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Distance formula 

The distance, d, between the two locations is given by the following formula. The first 

formula uses the haversine and the second one is written in more conventional trigonometric 

terms that are used in Excel [93]. 

                                            ___________________________________________ 
d = 2r arcsin   haversin(2 - 1) + cos (1) cos (2) haversin(2 - 1)   

                                            ___________________________________________ 
d = 2r arcsin  sin2 ((2 - 1)/2) + cos (1) cos (2) sin2 ((2 - 1)/2) 

r = radius of the earth, 6371 km 

1 = latitude of start location 

1 = longitude of start location  

2  = latitude of end location 

2 = longitude of end location 

 

Heading formula 

The heading on a great circle route changes along the path. The initial heading from the 

starting point to the final destination is calculated using the following formula: 

Bearing θ = atan2 (x, y) where: 

x = sin (2 - 1) cos (2) 

y = cos (1) sin (2)  −  sin (1) cos (2) cos (2 - 1) 

Note that Excel reverses the arguments of atan2. This must be taken into account when 

writing the formula in Excel by reversing the order of x and y, i.e. θ  =  atan2  (y,  x)    [94]. 

5.10.2 Effects of wind on helicopter ground speed 
A helicopter travels through moving air steams that influence the actual speed made good 

over the ground. The direction and speed of the wind in relation to the course and speed of the 

helicopter need to be considered when planning a flight. The wind has a direct consequence 

on the amount of fuel and time consumed on the trip. The practical consequences of the effect 

of wind on flight duration are reviewed and exemplified in more detail in section 6.8. 
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In order to examine the effects of wind on the helicopter ground speed, the diagram below in 

figure 21 and the following formula are used. In order to find the actual ground speed of the 

helicopter, the sum of the wind vector and helicopter speed vector must be added. The vectors 

AS, WS and GS in figure 21 illustrate this. The relationship between the vectors is: GS = AS 

+ WS. The parameters or variables shown in figure 21 are described below. 

 
Figure 21, Wind triangle, air speed, ground speed and wind speed 

AS, air speed is the speed that the helicopter is able to maintain through the air. This is 

normally the cruising speed of the helicopter, e.g. 145 knots. 

WS, wind speed, is the speed of the wind that is used in the calculations. 

GS is the ground speed. It is the actual speed made good over the ground taking into account 

the effect of the combination of the wind speed and the helicopter air speed. The ground 

speed vector, GS, has the same angular definition as the course that the helicopter needs to fly 

to reach its destination. 

C is the course (the direction) that the helicopter pilot wishes to achieve over the ground in 

order to reach the destination using the shortest route. 

Wd is the wind direction. The value is given in degrees and expressed as the direction from 

which the wind is blowing. 

Aw is the angle inside the triangle between the course that is desired and the heading of the 

helicopter when compensating for the effect of the wind, commonly referred to as drift. To 

compensate for the drift, the helicopter pilot must steer a course equal to the sum of the 

desired course, C, and the drift-compensating angle, Aw. 
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Av is the angle inside the triangle between the ground speed and the wind speed. 

Ac is the angle inside the triangle between the air speed and the wind speed. 

 
 

Figure 22, Sine law formula and illustration [8] 

The calculation method used takes advantage of the sine law that describes the relationship 

between the angles and sides of a triangle [8]. The sine law is illustrated in figure 22 above. 

The sine law gives the relationship between the length of a side and the sine of the angle 

opposite. This relationship is equal for all angles and sides in the given triangle. The use of 

the sine law is a common application for calculating angles or sides of a triangle when: 

a. One side and two angles are known, 

b. Two sides and one of the external angles are known.  

Calculation method 

The known parameters used in the calculation are listed in the table 8 below. 

Table 8, Known parameters used in the calculations 
Known variable Description Unit 
C Heading of the ground speed vector, GS as this is the 

course that needs to be made over the ground 
degrees 

AS Air speed of the helicopter, equivalent to the cruising speed knots 
WS Wind speed knots 
Wd Direction that the wind is coming from degrees 

Step 1: Calculate Av, the angle between the desired course GS over the ground and the wind 

direction WS. Add the red lines to assist in finding the required angle Av, see figure 23.  
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Figure 23, Lines added to calculate the angle Av 

The sum of all the angles around point B on the wind triangle is 360°.  

Av + Wd + 90° +  = 360° 

Av = 360° – 90° - Wd -  

The angle  can be calculated from the course, C, when adding a triangle with a right angle 

(90º), the red lines in figure 23. This is possible because both the wind direction and the 

course for the route are defined relative to north or 0°. The sum of the angles within the red 

triangle is 180°, therefore: 

 = 180° – C – 90° = 90° - C 

The formula for  is then substituted for  in the Av formula giving: 

Av = 360° – 90° – Wd – (90° - C)  

Av = 180° + C - Wd 

Step 2: Calculate Aw, the drift angle using the sine law on the relationship between Av, AS 

and Aw, WS. 

sin(Aw)=sin(Av) * WS / AS 

The arcsine of the result is the value of the drift angle Aw. 

Aw = arcsin(sin(Av) * WS / AS) 
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Step 3: Calculate Ac, the angle between the wind speed and the course or heading the 

helicopter must fly in order to compensate for the drift. Ac is calculated based on the fact that 

the sum of the three angles within a triangle is 180°, therefore: 

Ac = 180° – Aw – Av 

Step 4: Calculate GS, the ground speed using the sine law on the relationship between Av, 

AS, Ac & GS. 

GS = WS * sin(Ac) / sin(Av) 

The calculation method has been used to prepare the diagram in figure 24. This illustrates the 

effect of a direct head wind from 0° through 180° to a full tail wind for six cases of wind 

varying from 10 to 60 knots in 10 knot increments. A direct head wind will reduce the ground 

speed by the wind speed. Similarly, a direct tail wind will increase the ground speed by the 

same amount as the wind speed. Flying over a given distance where the wind is either exactly 

a head or tail wind of equal intensity will NOT cancel the effect of the wind for the complete 

round trip. An Internet calculator has been used to verify the method and calculation [95]. 

For winds between head and tail winds the effect of the wind will not be cancelled out when 

flying both directions in the same wind conditions. This is illustrated in figure 25 below for 

different velocities of the wind.  

 
Figure 24, Effect of wind on helicopter ground speed 
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The horizontal red arrow illustrates the heading of the helicopter relative to the angle of the 

wind that has a neutral effect on the ground speed. Any side wind relative to the helicopter 

heading will lead to drift away from the intended course. This needs to be compensated for 

and results in reduced ground speed. Figure 25 indicates that for a wind speed of ca. 10 knots, 

the wind changes from a negative to a positive speed component when the wind comes from 

ca 92,5°. Similarly, for a wind of 60 knots, the neutral point moves aft to ca 107,5°. The 

helicopter pilots take these effects into account when planning a flight and calculating the 

required fuel for the trip.  

 
Figure 25, Effect of side wind on helicopter ground speed illustrated for varying wind speed   

5.11 Effects of cold on health 
Air temperature, wind and humidity are critical factors for a   person’s health and ability to 

perform in cold climates [45 p6] The climate of the Barents Sea can have a negative effect on 

the health of personnel, existing health problems may be aggravated and otherwise healthy 

persons may experience cold related illnesses. In addition to injuries as a direct result of cold, 

e.g. hypothermia and frostbite, it is known that the cold has an impact on the respiratory and 

cardiovascular system and there is an increase in the frequency of heart attacks and strokes 

[45 p17]. The cold may induce asthma like symptoms and problems with breathing in 4 to 5% 

of the population and up to 20% if they perform heavy physical work at low air temperatures. 

It is also known that cold has a negative effect on musculoskeletal diseases, worsening 

existing conditions and revealing symptoms for persons who have not previously had 

symptoms. Raynaud’s syndrome (RS) is another cold induced illness often associated with 

white fingers and the loss of dexterity. Persons suffering from RS may experience 
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constriction of blood vessels leading to headaches, breast pains and possible impairment of 

vision [45 p17]. Metabolism is also affected negatively by the cold. 

The air temperature and the movement of air or wind affect the rate at which a person looses 

heat from their body. The cooling rate increases with increasing wind speed and decreasing 

air temperature. The effect is normally referred to as wind chill effect [45 p15]. It is necessary 

to protect personnel from the effects of the wind and cold air. This is often achieved by 

winterisation of the facility involving for example the installation of wind walls and 

adaptation of working clothes suited to the environment [45 p28]. 

The risk associated with work in areas of extreme cold require that the health of individuals 

needs to be screened more rigorously than previously in the petroleum industry. It is 

considered necessary to develop appropriate health requirements and methods to actively 

follow up health status and to prevent health deterioration [45 p31]. 

Emergency preparedness for medical situations will need to take into account the possibility 

that the condition of an ill or injured person may deteriorate more rapidly in a cold 

environment. Requirements for medical assistance onboard must be designed to compensate 

for the remoteness of the facility and the limited availability of medical infrastructure onshore 

in the northern areas of Norway. The training and competence of medical and first aid 

personnel is even more important than previously for offshore Barents Sea activities [45 p31]. 

5.12 Survival in cold water 
Factors influencing survival at sea are relevant because persons may enter the sea 

involuntarily due to a helicopter incident, lifeboat or life raft evacuation or as a last resort if 

they are unable to reach and embark a suitable means of evacuation. Survival for persons who 

are not in a lifeboat or life raft will depend on issues like the temperature of the seawater, the 

air and the wind causing cooling and eventually hypothermia and the effects of the sea state or 

waves causing drowning. As mentioned in section 5.4, many properties of an immersion or 

survival suit are tested and the main criteria are related to thermal insulation protecting 

against hypothermia and buoyancy protecting against drowning. Thermal mannequins or 

individuals are used in the tests [16]. It is not considered ethically acceptable to perform test 

with persons regarding the risk of drowning [72].  

There are a number of issues that can have a direct effect of the survivability of an immersed 

victim. Survival times at sea are dependent on the sea state, the temperature of the seawater 
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and the air and the type of protection and insulation the victim is wearing.  In addition 

personal factors like gender, body size and skin surface, physical fitness, age, shivering 

response and body mass index (BMI) play an important role. The thicker the layer of 

subcutaneous fat, fat under the skin, the better insulation will be achieved [7 p32].  If a male 

and a female of equal body fat percentage are immersed, the female will normally cool more 

quickly as the female has a greater ratio of skin surface to body than the male. This means 

that the female has less heat producing body mass and a greater skin area through which heat 

is lost [7 p129-139]. 

The first critical issue during immersion is the effect of cold water immersion (CWI) shock 

when entering the sea. If unprotected or poorly protected due to a leaking suit, the person may 

experience CWI shock when the cold water comes into contact with the skin causing the 

victim to gasp for air thereby increasing the risk of inhaling water and drowning. In addition 

there may be changes in the circulatory system potentially causing heart failure. The victim 

will normally also experience uncoordinated movements of the limbs and may not be able to 

keep afloat and prevent drowning. These symptoms will be experienced within the first 

minutes of immersion and are critical to survival [7 p59]. Fat under the skin, however, does 

not provide protection against the effects of cold water immersion shock [7 p65]. 

After surviving the initial shock of being immersed in cold water, the body will start to cool at 

a rate dependent on the protection provided by clothing or an immersion suit. When the 

ambient temperature begins to drop the body will respond by trying to conserve heat. This 

will first lead to a reduced blood flow to the skin and limbs. The skin and the fatty layers 

beneath will act as insulation. The surface temperature of the limbs and body will start to fall 

as the central body temperature is conserved. As body temperature falls towards 35°C 

shivering will start to stimulate heat production. If the body core temperature continues to 

fall, the person will experience reduced mental and physical activity slipping into apathy and 

unconsciousness. If cooling continues, the victim will experience an uneven heartbeat, 

arrhythmia and will risk cardiac arrest and death as the body’s  core temperature approaches 

24°C [7 p102]. 

Heat loss from the head can account for over half of the total heat loss. The face and 

respiration system can account for a third of the heat loss. The face requires protection in 

addition to the head. There is no practical way to reduce heat loss through respiration. Heat 

exchangers have been tried but with little success [7 p49]. Protection of hands and feet are 
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difficult to achieve. Fingered gloves provide a large surface that increase cooling. A fingerless 

glove or mitten provides better thermal insulation at the cost of dexterity, the use of the 

fingers [7 p49]. Due to the higher cooling effect (heat transfer) of water, a victim is always 

better off out of the water even if it may feel colder in the air [7 p48]. 

Seasickness or motion sickness is a common problem for persons onboard vessels, lifeboats 

and life rafts but also for persons in the sea in an immersion suit. Seasickness increases the 

rate of dehydration and impairs thermoregulation lowering deep body temperature. A person 

suffering from seasickness loses body heat faster than someone not suffering from motion 

illness. Seasick survivors are therefore more susceptible to hypothermia [7 p216]. 

Wetting of the inside of an immersion suit by leakage or cold induced urination will impair 

the thermal insulation properties [7 p129]. The effect is less in an insulated suit provided the 

water does not flow in and out of the suit [7 p47]. 

When floating vertically in the water, the hydrostatic pressure on the body will lead to an 

increase in the pressure of the circulation system. The body will attempt to reduce the 

pressure by reducing circulated fluid. This results in increased diuresis, the production of 

urine, and it is common for the body to produce 0,35 litres of urine within an hour of 

immersion [7 p53]. If urine is released inside the suit it may impair thermal insulation 

properties of the suit [7 p129]. 

There is evidence supporting that a positive mental attitude can have a strong effect on the 

will to survive and to do what is required in order to survive. Training and knowledge can 

help to maintain a positive mental state and avoid panic or depression. Awareness of common 

challenges and their criticality can help keeping a positive frame of mind. For example 

knowledge that almost all immersion suits leak some water and that the effect will not 

normally be lethal in the short term may prevent concern. It will also help to know how to 

prevent and combat seasickness [7 p137] 

An unconscious person will not be able to follow waves and prevent swallowing of seawater. 

A conscious person will have an ability to follow the waves and synchronise breathing to 

avoid swallowing seawater, however this may prove exhausting in time. Provision and use of 

splashguards will improve survival at sea [7 p111] 

There are reported cases of rescue collapse, persons losing consciousness and even dying 

during a vertical lift to a rescue vessel or helicopter [7 p250]. It has been observed that as 
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many as 20% of persons rescued from cold water, below 10°C, die within 24 hours, especially 

in the period from 20 to 90 minutes after rescue, irrespective of their being conscious or 

unconscious at the time of rescue [7 p247&248]. When lifting a person who has hypothermia 

and has been floating vertically in the water, they may experience a sudden drop in blood 

pressure if lifted in a vertical position. This may be a contributing factor to rescue collapse 

and death and is particularly evident when the water is cold [7 p246]. Analysis of actual 

rescue survival and tests performed in controlled situations indicate that victims should be 

lifted from the sea in a horizontal posture to avoid collapse and fatality [7 p262]. 

Many of the activities critical to survival in the sea are dependent on the use of hands, arms or 

legs. These activities may include closing zippers on survival equipment, pulling on a hood, 

filling air in a floatation device, grabbing a rope, swimming and climbing into a life raft. As 

the skin, nerves and muscles of the limbs are cooled, the ability to use and move them, 

dexterity, is reduce or even lost [7 p69]. Dexterity is reduced already at skin temperatures 

between 15-20°C and pain, reduced muscle strength and coordination of the hand may be 

experienced at 10-15°C [45 p20]. 

Those who design and manufacture rescue equipment should understand and take into 

consideration the physiological threats that may reduce the survivor's capability to use or 

operate the equipment. This also applies to those providing training in survival at sea [7 p15]. 

It is generally considered that the period of useful consciousness for a person submersed in 

seawater at a temperature of 5°C is ca. 30 to 40 minutes for a naked person and increases 

towards 6 hours for a person with dry underclothing in an insulated immersion suit [7 p131]. 

This emphasises the importance of the work currently being performed by participants in the 

petroleum industry to improve the immersions suits used during helicopter transport and for 

survival in the sea [85]. This work is discussed briefly in section 5.4. 
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6 ANALYSIS & RESULTS  

6.1 Barrier analysis of Medevac 
A situation on an offshore facility requiring medical evacuation (medevac) of an ill or injured 

person is analysed in this section using the bow tie method. The analysis is performed in two 

tiers or levels as described in section 5.3 and figure 10. The first tier analyses the situation of 

an illness or injury occurring at an offshore location and leading to the need for a medevac. 

The second tier considers the medevac and the probability of a successful operation. 

Level 1 – avoiding the need for a medevac 

 
Figure 26, Threats leading to an incident requiring medical attention 

There are basically two situations that can initiate the need for medical assistance offshore as 

illustrated in the diagram above, figure 26. A person can experience a health problem or be 

injured.   According   to   the   bow   tie  method   the   hazard   in   this   case   is   defined   as   “personnel  

offshore”.  The  fact   that  personnel are on the installation inherently means that someone can 

become ill or get injured. Illness or injury is then defined as being the top event. The threats 

in this case are simplified for illustration purpose to being either an acute health problem or an 

accident in connection with dangerous work. In the case of poor health a threat control is in 

place in an attempt to eliminate the problem. There is a requirement for health screening and a 

valid health certificate for personnel travelling to an offshore facility. There is an escalation 

factor that needs consideration in connection with health certificates. If a doctor should decide 

that a person does not fulfil the requirements for a valid health certificate, there is no 
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mechanism in place today to register the rejection. There is also no common system for 

gathering all patient data and making it available to any doctor. The person can approach 

another doctor and apply for a health certificate. There is no link to the previous rejection and 

if the person withholds information, the doctor may issue a health certificate on incomplete 

background information. It is also important that the doctor issuing the health certificate is 

competent and aware of the special issues related to offshore work in remote and cold 

climates. In the case of dangerous work, safe working procedures are normally in place as a 

threat control to eliminate accident or injury. In addition it is normal to wear protective 

clothing as a threat control to prevent or reduce the extent of injury. The barriers in place to 

avoid an injury during work may also be weakened or compromised if procedures are not 

followed or personal protection equipment is not used or used incorrectly. These breaches 

would be defined as escalating factors. Escalation factor controls like buddy checks, 

colleagues helping each other, and procedure awareness programs may be typical measures 

put in place to avoid barrier defeat.  

 
Figure 27, Consequences of an acute illness or injury 

Recovery measures are considered on the right hand side of the bow tie as shown in figure 27 

above. In case of cardiac arrest, as an example, the first aid team will start cardiopulmonary 

resuscitation (CPR) and may use a heart defibrillator. These recovery measures may be 

defined as reducing the immediate consequences. The offshore medical personnel, nurse or 

medic, may be considered a recovery measure, mitigating or lessening the consequences by 

administering thrombolytic treatment in consultation with the duty doctor onshore. The 

offshore medical personnel would prepare the patient for medevac and the duty doctor would 

request the helicopter for transport of the patient to a hospital onshore for further treatment 

and hopefully full recovery. 
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This case is used to illustrate the bow tie method and as an introduction to examining the next 

level where the medevac operation is analysed. In the analysis a selection of critical hazards, 

threats, barriers and escalation factors are mentioned as examples. The bow tie diagram can 

be developed to a higher level of detail in a full study of all issues in place to avoid illness or 

injury on an offshore facility. The intention here is to evaluate the critical issues and 

demonstrate application of the bow tie method to issues related to emergency preparedness. 

Level 2 – performing the medevac 
The analysis continues on a second level and considers issues related to the helicopter 

transport during the medevac. There are many critical issues related to helicopter transport 

that are of a generic nature. In this analysis the aim is to examine issues that are of particular 

importance to operations in the Barents Sea. The hazard in this bow tie is the medevac 

operation. The top event is an unsuccessful medevac where it may not be possible to transport 

the patient to an onshore hospital or medical facility. 

On the left hand side of the bow tie, figure 28 on the next page, the threats that may lead to an 

unsuccessful or delayed medevac are considered. The main threats that will be considered 

here are weather conditions, planning of medevac capability and available helicopter 

resources. Escalation factors, issues that can weaken or defeat threat controls (barriers), are 

introduced and analysed. The analysis could include more threats, but the intention is to focus 

on those that may be critical and investigate how they can be dealt with. 

The weather is a threat to all helicopter transport and reliable weather reports are critical to 

operations [73]. It is difficult (not possible) to eliminate the threat posed by the weather but it 

is possible to put in place preventive threat control measures. In the case of a medevac 

situation, the weather will be taken into account when planning the flight. Activity planning 

onboard the facility has been included as a preventive threat control in the sense that 

consideration could (and should) be given to the combination of the risk for injury to 

personnel due to the planned activity and the effect of prevailing weather conditions on the 

feasibility of a medevac. It is fair to argue that this combination can be taken into account 

because the activities planned on the facility are under the control of the persons onboard. The 

need for medevac due to health reasons is under less control once personnel are offshore and 

the need may arise any time during the day or night.  
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Figure 28, Threats that may lead to an unsuccessful or delayed Medevac 

Another threat that may lead to an unsuccessful medevac is the time required to perform the 

operation. The industry has agreed on 3 hours as a performance requirement for transport of a 

patient from an offshore location to a hospital or medical facility onshore [20 p55]. There are 

no clear medical grounds for the selection of 3 hours and this performance requirement is, to a 

certain extent, challenged [72]. The 3 hours start from the point in time where the need for a 

medevac is identified until the patient is at the hospital. It may be necessary to agree on a 

common approach, however, 3 hours does not take into account the potential for varying 

urgency for transport to hospital. This performance requirement may indicate more what is 

reasonably possible than what is necessary in each individual case. When planning an activity 

at an offshore location it will be found that there are areas in the Barents Sea and Norwegian 

Sea where it is not possible to meet the agreed performance requirement due to distance 

unless the helicopter is based offshore on or close to the remote facility. Even then it is 

possible to experience limitations related to maximum wind speeds for start up of the 

helicopter rotors resulting in an unsuccessful medevac. In this analysis optimistic planning of 

emergency preparedness is identified as an escalation factor. Escalation factor control may 

include   an   independent   review   of   an   operator’s   emergency   preparedness   plans   and   the 

assumptions in place in risk and emergency preparedness analysis. Remote locations will 
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require special considerations on the right hand side of the bow tie in order to compensate for 

the time required to complete a medevac when the helicopter is based onshore.  

The helicopter resources available for performing medevac in the Barents Sea are currently 

limited to one transport helicopter and one AWSAR helicopter stationed in Hammerfest and 

controlled by the petroleum industry [74]. In addition there is the Norwegian Search and 

Rescue Service Sea King helicopter stationed at Banak. The Sea King at Banak is located 

inland and needs 30 to 40 minutes to reach the coast. The Sea King is not equipped with de-

icing equipment and the pilot may have to make special considerations during a flight or even 

abort the operation if icing conditions are present. With the current activity level of normally 

only one exploration facility working in the Barents Sea, access to resources is not critical but 

may become so if activity increases. 

 
Figure 29, Unsuccessful Medevac, barriers to reduce and mitigate consequences 

On the right hand side of the bow tie, figure 29, the consequences of an unsuccessful or 

delayed medevac are considered. If it should prove impossible to perform the medevac there 

is limited assistance available to the patient at the offshore location. The consequences may 

be that the illness or injury is of a nature that could result in a fatality if not treated in a 

hospital. Recovery measures to both reduce and mitigate the ultimate consequence of a 

fatality may involve a trauma team and an offshore hospital with operating theatre on the 

facility. There are a number of recovery measures that are considered as a standard today. 

These include a contract between the operating company and a provider of 24/7 on duty 

doctors for consultation on the telephone and who are able to mobilise within given time 

limits to travel to the facility. Another recovery measure may be increased training and 

competence for the offshore medical personnel and some members of the first aid teams 
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working on facilities in the Barents Sea. This includes starting treatment of certain illness and 

injuries as indicated previously in the example of administering thrombolytic treatment to 

heart attack patients. Lack of competence is indicated as an escalation factor as the exposure 

of the offshore medical personnel to many and varied illnesses and injuries are limited. This 

can be countered by increasing the requirement for internship at hospitals for the medic. 

Increased training and exposure of the first aid teams to emergency health related situations 

might also be necessary to consider. Telemedicine can also be defined and used as a barrier in 

this case. The use of telemedicine provides direct contact between the patient and medical 

personnel offshore and a doctor or hospital onshore [75]. This has increased the repertoire of 

recovery measures available offshore. This barrier, telemedicine, may be defeated if the 

communication systems and equipment used are not evaluated carefully with regard to 

competence of the users, reliability, redundancy and maintenance in order to counteract 

malfunction. 

Summary of the identified barriers 
Barriers to reduce the need for medevac  

 Health requirements for personnel working offshore in the Barents Sea in order to 

avoid, as far as reasonably possible, the need to perform a medevac. 

 Procedures to ensure safe working so as to eliminate or prevent the need to perform a 

medevac. 

Barriers to avoid unsuccessful medevac 

 Operational procedures to eliminate or prevent the need to perform a medevac in 

adverse weather conditions. 

 Sound planning and review of emergency preparedness for medevac. 

 Robust access to helicopter resources. 

Barriers to avoid escalation of injury, illness or fatality  

 Improve competence of first aid teams and medic/nurse. 

 Secure access to on duty doctor. 

 Provision of telemedicine equipment on the offshore facility. 

This barrier analysis has addressed the following issues: 
 What is the barrier? (System and elements) 
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o A system to avoid illness or injury of personnel, provide medical assistance on 

an offshore facility and transport to a hospital onshore for treatment.  

o The elements in the barrier system are health certificates, procedures for safe 

work, medical expertise and helicopter transport. 

 What shall the barrier eliminate or prevent (left hand side)? 

o The barrier system shall eliminate and prevent the need for a medevac. If a 

medevac should be required the barrier system shall ensure that it is possible to 

perform the required operation by helicopter, i.e. eliminate and prevent not 

being able to perform the operation by helicopter. 

 What shall the barrier reduce or mitigate (right hand side)? 

o Ultimately the barrier system shall reduce and mitigate the deterioration of the 

condition that potentially may lead to a fatality. 

 How can the barrier be weakened or defeated? (Escalation factor) 

o Insufficient health controls and lack of competence regarding special issues 

related to work in remote and cold climates, 

o Lack of or non-adherence to procedures for safe working, 

o Adverse weather conditions, 

o Optimistic or unrealistic planning of emergency preparedness, 

o Insufficient competence of offshore medical personnel, 

o Insufficient competence or malfunction of telemedicine equipment. 

 How can weakening or defeating of the barrier be eliminated or prevented? 

(Escalation factor control) 

o Improve requirements and control of system for issuing health certificates, 

o Systems to ensure adherence to working procedures, 

o Operational limitations for dangerous activity onboard during marginal 

weather conditions for helicopter transport, 

o Review of emergency preparedness analysis and plans, 

o Improve competence requirements for offshore medical and first aid personnel, 

o Robust design and maintenance of telemedicine system. 

 What are the performance requirements of the barrier system? 

o The overall performance requirement of this barrier system is that personnel in 

need of medical assistance at a hospital shall be transported and arrive at the 

hospital within 3 hours of the need being identified. 
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o Performance requirements should be defined for the individual elements of the 

barrier system. 

 How can the barrier and performance requirements be tested? 

o Performing emergency preparedness exercises under varying conditions can 

test the barriers and the performance requirements. 

o Processes for auditing the performance of the individual elements of the barrier 

system. 

 Are there dependencies between the various barriers in the protection system or 

barriers being used more than once? 

o Offshore medical resources are limited and appear more than once as a barrier 

in the analysis.  

Recommendations arising from this case 
 It may be prudent to implement more stringent health requirements and screening of 

personnel who are to work on offshore facilities in the Barents Sea. This 

recommendation may lead to debate amongst the parties involved in the petroleum 

industry. There is a tradition in the industry to have the same basic requirements on 

the entire Norwegian continental shelf. 

 It may be advantageous to coordinate the activities in the Barents Sea. There are few 

helicopters to cover a very large area. Consider activities in the vicinity of each other 

and optimise the sequence and locations of exploration rather than spreading activity 

over time and large distances. 

Threats not discussed in this bow tie analysis 
 Weather threats: Visibility, not possible to land or hover over helideck if visibility is 

low, e.g. fog and intense rain or snow showers.   

 Availability of accessible helideck: Movement of helideck on floating installations, 

not possible to land or hoist patient by winch. Ice or snow on helicopter deck, not 

possible to land or dangerous for personnel to move on helideck. 

6.2 Barrier analysis of helicopter in sea  
In this section an incident involving an emergency landing of a helicopter in the sea is 

analysed. There is a significant difference between a crash, involving uncontrolled entry into 

the sea, and an emergency landing or ditching, that may be a controlled entry to the sea. There 

are lessons to be learned from the investigation of helicopter accidents. Before performing the 
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bow tie analysis, three reports are evaluated; the Cormorant A accident on the UK sector in 

1992, the accident in 2009 off the coast of Newfoundland and a ditching off the coast of 

Norway in 1996. 

Cormorant A, 1992 
This accident occurred on the evening of 14th March 1992 at 1950 hours east of Shetland in 

the North Sea. A Eurocopter AS 332 L with 15 passengers and 2 pilots crashed into the sea 

while transferring personnel from Cormorant A to a nearby floatel facility. The wind had 

generally been at 40 to 50 knots but had increased to 50 to 53 knots before the accident. There 

were also snow showers passing the area. The air temperature was recorded to be 0°C [37 

p14]. The aircraft lost speed while climbing and turning after take off and crashed into the 

sea, capsized and sank within one or two minutes. Of the 12 who escaped before the 

helicopter sank, only 6 were rescued alive. Some of the remaining 6 who escaped had 

survived for a considerable time in the hostile conditions but died before being rescued. One 

of the survivors was seriously injured. There were a total of 11 fatalities in the accident. The 

accident occurred in darkness [37 p2]. 

Two survivors, A and B, were interviewed by the HSE after the accident. The following 

information has been collected from the HSE report on helicopter safety [63]. Both had 

recently attended safety refresher courses prior to the accident. In the case of survivor A, only 

one month had elapsed. Both considered that the training had aided their survival. Both wore 

a zip up neck seal immersion suit. Neither of the two survivors had used the spray hood 

mounted on the immersion suit as it deprived them of vision and hearing which they regarded 

as essential in their fight against the elements and they wanted to stay in touch with the other 

survivors [63 p44-46]. 

Survivor A had not zipped up the suit entirely due to discomfort and the suit took in some 

water when he entered the sea. This person had become aware of an imminent crash just prior 

to the accident. He escaped through a window that had blown into the aircraft upon impact. 

Survivor A had problems inflating the lifesaving jacket and experienced that he almost lost it 

several times due to the lack of a crotch strap to keep it from slipping over his head. This 

survivor remained in the water and paddled continuously to keep his head above the water. 

This person suffered badly from cold and was unable to use his hands to put on his gloves. He 

used a lot of energy to keep afloat and protect himself from the sea. He believes that he was 

nearing the end of his endurance before being rescued. The person was eventually rescued by 
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twisting an arm and leg into a rope passed down to him from a rescue vessel and was 

subsequently hauled aboard [63 p44-46]. 

Survivor B had zipped up the suit correctly and had inflated his lifesaving jacket. He was 

wearing jeans, a long sleeve shirt, sweatshirt and a working thermal under the immersion suit. 

This person had no awareness of a developing incident until the aircraft crashed into the sea 

and started filling with water. He was able to take a couple of deep breaths before going under 

water. He attempted to escape without releasing his safety belt and succeeded after releasing 

the belt. This survivor made his way to a damaged and partially inflated life raft where he 

remained for most of the time until his rescue. Together with 3 other persons, they managed 

to stabilise the raft. He did not experience cold for the first half hour but his hands eventually 

became numb and it was necessary to cling to the raft with his arms. As time lapsed and 

especially after being the only remaining person on the raft, he became increasingly 

demoralised, frustrated by the lack of rescue and felt the onset of hypothermia. He was finally 

rescued by a helicopter hoist and returned to the Cormorant A. He was the last survivor to be 

rescued and was in the best physical condition. The fact that he was able to stay mostly out of 

the water is considered to have contributed significantly to his survival [63 p44-46]. 

The investigation group consider it significant that the survivors stamina, clarity of mind, 

strong ability to swim, ability to control breathing when under water, their proximity to 

escape windows and recent refresher safety training had been essential factors leading to their 

survival [63 p46]. 

Newfoundland 2009 
On the 12th March 2009 at 0956 hrs a Sikorsky S-92A on a flight to the Hibernia platform 

lost all oil from the main gearbox. The crew descended to 800 feet and turned towards St. 

John’s.  When   attempting   to ditch the helicopter ca 35 NM from St. John's, the helicopter 

crashed into the sea at a high velocity. One passenger survived with serious injuries and the 

other 15 passengers and 2 crew died of drowning. Apart from the survivor, only one other 

person managed to escape from the wreck, however, this person also drowned [39]. The 

accident occurred in daylight. 

The aircraft probably struck the sea at a forward speed of 55 to 60 knots. The impact with the 

water is estimated to have been 20g to 25g. The collapsing of structural elements of the 

aircraft, the seats and the 4 points harnesses has attenuated the forces. It is expected that the 

persons onboard have been exposed to acceleration forces in the range of 5g to 8g. Many of 
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the passengers on this flight experienced serious fractures to the lower limbs on impact with 

the sea. This may have added to the psychological and physical stress during the initial phase 

of the accident. In addition the aircraft frame was seriously damaged and sank rapidly. All 

personnel onboard were wearing immersion suits and apart from the survivor and one person 

found on the surface, the remaining persons were in their seats with the safety harness closed. 

Research has shown that only 10-15% of individuals involved in this type of helicopter 

accident are able to effectively perform the necessary actions to escape [39 p29-31]. The 

weather at the scene of the accident is estimated with a sea temperature of 0,1 to 0,3°C, air 

temperature of ca 2°C, wind at 14 knots gusting to 20 knots and a wave height of ca 2,5 

meters [39 p19]. 

The sole survivor of this accident escaped through a window that was knocked out during the 

impact and he was brought to the surface by the buoyancy of his survival suit. He probably 

escaped when the helicopter hull was at 20 to 30 feet below the surface of the sea. The other 

person who had escaped from the helicopter had probably not been able to hold her breath and 

drowned shortly after reaching the surface [39 p124]. The survivor’s suit was one size to large 

and he took water into the suit [39 p30]. During the time in the water his core temperature fell 

by 7,2°C and his heart rate became irregular. Considering the rate at which his temperature 

fell, it has been calculated that he would have reached a critical core temperature of 24°C 

within 2,5 hours and not survived for longer [39 p124]. The survivor was a small boat sailing 

instructor, familiar with submersion in cold water, escaping from under capsized boats, fit, 

mentally prepared, had a strong will to survive and had recently performed safety training [39 

p137]. This may have contributed to a physical and psychological advantage aiding in his 

survival. 

Norway 1996 
On the 18th January 1996 at 0845 hours it was reported that a Super Puma helicopter had 

ditched in the North Sea ca 30 NM from Egersund off the south west coast of Norway. There 

were 16 passengers and 2 pilots onboard of which all were rescued. The controlled emergency 

landing was performed due to vibration in the rotor system. The helicopter capsized during 

the night but stayed afloat for ca 35 hours from the ditching until it finally sank at 1700 hours 

on the 19th January [38 p3]. The wind was 25 to 30 knots, the wave height was 3 to 4 meters, 

the sea temperature was 5 to 6°C and the air temperature was 4 to 5°C [38 p5&12]. The 

accident occurred in daylight. 
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All of the passengers wore immersion suits of varying types and the pilots had non-insulated 

survival suits [38 p17]. The passengers observed that the pilots soon suffered from the cold 

[38 p20]. A life raft was deployed and all went aboard. This life raft drifted under the tail 

boom and was punctured by the tail rotor. This life raft was abandoned and all returned to the 

helicopter. A second life raft was deployed with 4 persons onboard, however, it was difficult 

to keep control of the raft under the weather conditions and it drifted away. All 14 persons 

remaining in the helicopter were then dependent on the floatation equipment of the helicopter 

and their own immersion suits. Helicopter fuel leaked into the cabin. The fuel combined with 

the motion of the helicopter in the sea caused some persons to become seasick.  A helicopter 

arrived at the scene shortly after the ditching. Even though this helicopter did not have a hoist, 

the persons in the ditched helicopter felt it reassuring that another helicopter was standing by 

[38 p20]. Two Sea King helicopters were deployed from Sola to the scene of the incident and 

all personnel were rescued and returned to Sola within approximately 1,5 hours from the 

ditching occurred [38 p22]. 

Observations 
Cormorant A 

 Sealed and dry immersion suit with correct underclothing can enhance survival. 

 When in the sea, it is better to stay out of the water due to a lower cooling rate in air. 

 Training and mental capacity to handle the challenges of the situation are critical to 

survival. 

 It can be essential to retain mobility and dexterity of hands and fingers in order to be 

able  to  assist  in  one’s  own  rescue. 

 This accident, with significant loss of life, occurred in conditions within but close to 

the limits for helicopter operations stipulated by OLF [23]. 

Newfoundland 
 Correct size of immersion suit is critical to avoid water leaking into the suit. 

 Mental and physical preparedness may enhance survivability. 

 Passengers are at a disadvantage when entering very cold seawater under severe 

circumstances and escape will probably not be effective.  

Norway 
 The helicopter stayed afloat for a long time in 4 to 5 meters wave conditions. 

 The helicopter can be used as a survival craft when ditching under suitable conditions. 

 Life rafts are difficult to use and control effectively in waves and wind. 
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 Seasickness can be expected amongst survivors.  

 The protective clothing for the pilots may have proved insufficient in time. 

Recommendations arising from reports on helicopter safety 
The HSE report on helicopter safety draws attention to the importance of considering the 

surface conditions with regard to the capability to rescue survivors along the whole route 

rather than only at each end [63 p13]. The report rejects the suggestion that flights should be 

suspended if conditions are not suitable for ditching but argues that methods should be 

improved to ensure that survivors of a ditching or crash in the sea can have a reasonable 

expectation of being rescued alive [63 p28]. The importance of providing guidance to 

managers concerning departure criteria in adverse weather conditions with regard to survival 

and rescue times is emphasised [63 p35]. 

After the Newfoundland accident, the Transport Safety Board of Canada recommended 

prohibiting operation of transport helicopters over water when the sea state would not permit 

safe ditching and successful evacuation [39 p149]. The aircraft involved in the Newfoundland 

accident was certified for sea state 4 [39 p16]. S-92A helicopters operated in Norway are 

equipped with improved floatation equipment certified for sea state 6 (Beaufort 7 to 8) [39 

p17]. This is a sea state that is more benign than the limits set by OLF guidelines that allow 

helicopter operations up to 55 knot wind, corresponding to sea state 8 (Beaufort 10) [95]. 

Event tree 
The escape from the hull of a crashed helicopter is considered one of the most critical issues 

related to survival [63 p22]. Accident reports show that after a severe crash helicopters often 

capsize and sink. This allows little time for the survivors to escape [63 p24]. The two possible 

branches of helicopter floating or sinking are used as the starting point for the event tree. 

The possible development of an incident where a helicopter ditches in the sea is analysed in 

the event tree in figure 30 below. This is a simplified event tree and would be further 

developed during thorough risk and emergency preparedness analyses. In this event tree 

“helicopter  floats,”  means  that  the  floatation  aids  are  deployed  and  the  helicopter  is  stable  in  

the   sea   in   an  upright  position.   “Helicopter   sinks,”  means   that   the   individuals onboard must 

make their escape from underwater. The helicopter may have capsized, floatation may be 

keeping the helicopter afloat but upturned or the helicopter could be fully submerged and 

sinking. The helicopter could also crash into the sea with a higher probability of fatalities or 

injuries. A crash event is not discussed in this section, as the situation for survivors would be 
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similar to the ditch event. However, it may be more difficult to take care of themselves due to 

injuries. 

 
Figure 30, Event tree for helicopter accident in the sea 

The causes leading to a helicopter ditching in the sea are not considered in this analysis. 

Barriers to prevent an emergency landing on the sea may include issues like design of the 

helicopter, operation, maintenance, inspection and competence of the crew and are all a 

prerequisite for helicopter transport.  

In this event tree there are two main paths that are analysed. The paths are: 

1. Helicopter floating and allowing a controlled escape without the need for underwater 

escape. 

2. Helicopter filling or filled with water, capsized, submerged or sinking leading to an 

uncontrolled situation where everyone must take control of their own escape. 

Event tree path 1 – helicopter floats 
In path 1, as shown in figure 28, when the helicopter is floating in the sea, there are three new 

paths that may be followed: 

1.a Presonnel stay in the helicopter 
1.b Personnel evacuate to a life raft 
1.c Personnel escape and are in the sea 



 87 

Path 1a: If the helicopter is floating in a stable position in the sea personnel could remain 

aboard, as this will provide some protection from the elements. This may be a possible 

approach in sea conditions that are within the helicopters stability certification. One would 

need to prepare to exit at short notice if the helicopter lost stability and started to capsize. 

Some individuals may suffer from seasickness in a situation like this. Depending on time until 

rescue, persons may start to cool and suffer hypothermia. Fatalities in this situation are a 

possibility, but one would not expect a high probability. A reference case here would be the 

incident on 18th January 1996 where a Supa Puma 332L1 ditched in the North Sea [38]. 

Path 1b: If the persons choose to or are forced to leave the helicopter, it would be expected 

that they could deploy the life rafts and board them. The life raft would provide some shelter, 

however the probability of cooling and hypothermia may increase as the persons may have 

been in the sea. This path in the event tree would have a similar progression as the one 

described for the persons remaining in the helicopter. The option of using a life raft eliminates 

the risk of being trapped in the helicopter if it should suddenly capsize. 

Path 1c: The final sub path considers persons being in the sea. This may happen if the 

helicopter sinks and for some reason the life rafts are not deployed. The life rafts are 

extremely susceptible to wind and may blow away and some or all persons may not be able to 

board one. It is a prerequisite for survival in this situation that the persons are wearing 

immersion suits, a regulatory requirement for helicopter transport in Norway. 

Event tree path 2 – helicopter sinks 
In the 2nd main path, the situation of the helicopter sinking is considered. There are two sub 

paths, one where persons escape and the other is that they do not escape from the helicopter. 

For those who do not escape from a sinking helicopter, the consequence is fatality. There are 

a number of issues that are immediately critical as the helicopter begins to sink. The first issue 

is to ensure that the immersion suit is correctly sealed to avoid water entering. The person 

must be able to breathe and operate the breathing lung on the immersion suit to aid escape as 

the helicopter goes under water. If the suit is not properly sealed and cold water enters, the 

person may suffer from cold water immersion shock (CWI), which can lead to cardiac arrest 

and drowning. If the person has water in the suit, the onset of hypothermia will be quicker 

than for a person who has sealed their suit and is dry. Seasickness, hypothermia, and 

drowning, as discussed in section 5.12, are possible consequences that can escalate to fatality 

in this situation [7]. 
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Bow tie analysis 
According  to  the  bow  tie  method  the  hazard  in  this  case  is  defined  as  “helicopter transport”.  

The fact that personnel are transported by helicopter inherently means that an incident can 

occur where a helicopter makes an emergency landing in the sea. An emergency landing of 

this type is commonly referred to as a ditching. Alternatively, the helicopter may crash into 

the sea. This analysis is also performed in two tiers or levels as described in section 5.3 and 

figure 10. The first tier analyses the situation of threats posed to persons in the sea and 

exposed to the elements. The second tier considers the rescue operation and the threats that 

may lead to an unsuccessful rescue and ultimately fatalities.  

Level 1 – persons in the sea 
This level is illustrated in figure 31 & 32 and follows an incident where the helicopter has 

ditched into the sea. As discussed above in the event tree in figure 30, the helicopter is in the 

sea and persons may be exposed to the elements unless properly protected.  

 
Figure 31, Threats to persons in the sea and exposed to the elements 

In figure 31 above,  the  top  event  is  defined  as  “personell in the sea exposed to elements”.  The  

threats that they must be protected against are simplified to cold air and water, water in 

respiratory system and the sea state. The threat controls in place to prevent exposure are 

availability of weather forecasts, procedures governing departure criteria, the provision of 

immersion suits with spray hoods, life rafts and the emergency floatation system of the 

helicopter. Weather forecasts and use of OLF procedures for operational limitations are 

intended to ensure a reasonable probability of rescue in the case of an accident within the 500 
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meters safety zone. There are escalation factors that may defeat or weaken the established 

barriers. The quality of the weather forecast is critical for a correct decision regarding 

fulfilment of the departure criteria. The local weather can be measured automatically or by 

competent observers on the offshore facility. In both cases training of the observers, 

maintenance and calibration of the meteorological equipment are important escalation control 

factors. It is important to bare in mind that the quality of weather forecasts for the Barents Sea 

are generally not as accurate as for other areas of the Norwegian continental shelf and one 

should possibly lean towards conservative use rather than optimistic. The limit conditions for 

the departure criteria may be unintentionally violated if personnel are not competent to 

interpret the weather forecast within its limitations. The departure criteria may also be 

wilfully violated by a tendency to stretch the limits in order to keep up regularity of the 

flights. In both cases training and supervisory activities may be escalation factor controls. 

Moving on to the right hand side of the bow tie in figure 32, the barriers in place to mitigate 

and reduce the consequences after ditching are analysed. The first critical issue is that 

personnel must be able to escape from the helicopter. Various possibilities have been 

discussed in the event tree in figure 30. If the helicopter is submerged, the persons will need 

to take responsibility for their own escape. The recovery measure in this case is the helicopter 

underwater escape training (HUET) that is required for personnel travelling by helicopter to 

an offshore facility. This barrier may be defeated if escalation factor controls are not in place 

to ensure that all personnel travelling offshore have the required HUET training and re-

training. Another recovery measure for the same consequence is the breathing equipment built 

into the immersion suit. Escalation factors defeating or weakening this barrier may be that the 

breathing equipment is defective or that the person does not have the necessary competence to 

operate it. The escalation control factors in place in this instance are, in addition to HUET, the 

video that is shown prior to departure with instruction on how to use the immersion suit and 

maintenance of the immersion suit. 

An important recovery measure to mitigate hypothermia and drowning is to rescue the 

persons. Rescue may be defeated for many reasons and will be analysed in the next level and 

bow tie diagram in figure 33. Recovery measures to reduce the effect of exposure to the cold 

water and air are the immersion suit with spray hood and the use of protective warm clothing 

under the suit.  

With regard to the consequences of cold water immersion, it is critical that the recovery 

measure of a properly worn and watertight immersion suit is in place. In addition, if the suit 
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should leak, wearing warm protective clothing under the suit may reduce the effect. If the suit 

is not worn and used correctly, this would be an escalation factor that may defeat the recovery 

control measure. An escalation factor control that is in place is, once again, the video that is 

shown prior to departure.  

 
Figure 32, Consequences of exposure to sea and the elements  

Level 2 – rescue operation 
The bow tie in figure 33 is intended for the analysis of the threats that may lead to failure to 

rescue the persons in the sea after a helicopter ditching. The hazard in this diagram is 

considered to be a rescue operation after a helicopter ditch event. The top event is the inability 

to rescue the survivors. 

The threats that can lead to a failed rescue operation are many and a selection is considered. 

The threat posed by poor visibility and light conditions may be controlled with barriers like 

the use of a personal locator beacon (PLB), night vision goggles and forward looking infrared 

camera/radar (FLIR). Examples of performance requirements for these barriers could be the 
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range   of   the   PLB,   the   FLIR’s   ability   to   detect   small   temperature   differences   and   the  

performance specifications for the night vision goggles. It must be possible to rescue persons 

before there is a high probability that they will have succumbed to the effects of the elements. 

 
Figure 33, Threats that may lead to an unsuccessful rescue of survivors in the sea 

The barriers may be the emergency preparedness planning and an effective alert that an 

incident has occurred allowing the mobilisation of rescue resources. The weather conditions 

are a threat that can reduce the probability of survival. The availability of reliable weather 

observations and forecasts coupled with departure criteria can secure a fair probability that a 

rescue operation is feasible. Insufficient information is a challenge to many rescue operations 

and efficient communication between rescue resources, incident controlling centres and the 

casualties is paramount [J07]. The rescue man on a SAR helicopter is a single resource that is 

critical to the operation. The importance of training of the rescue man, survivors and the 

design of the equipment these may be exposed to is a critical issue. A performance 

requirement may be the weather limits for a rescue operation and the physical fitness of the 

rescue man providing sufficient endurance to rescue all the survivors. Performance 

requirements in this instant would be the 120 minutes requirement to rescue 21 persons from 

the sea and that the rescue man is physically and mentally fit to endure the effort required 

[J07]. Finally the availability of SAR resources is a threat to a rescue operation. Through 
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emergency planning the resources required to provide a robust service are put in place. The 

maintenance of these resources, including the competence of all involved in the rescue 

operation, are barriers in place to ensure success.  

Summary of the identified barriers 
Barriers to prevent exposure to the elements 

 Properly fitting immersion suits with correct use of undergarments. 

 Helicopter with appropriate floatation certification for the conditions in area of use. 

 Procedures to ensure flights are only commenced when rescue is possible.  

Barriers to avoid escalation of incident to hypothermia or fatality 

 Properly fitting immersion suits with correct use of undergarments. 

 Training and competence related to escape from a submerged helicopter. 

Barriers to avoid unsuccessful rescue 

 Reliable weather forecasts and departure criteria. 

 Sound emergency preparedness planning erring toward caution. 

This barrier analysis has addressed the following issues: 
 What is the barrier? (System and elements) 

o The barrier system is a combination of operational and technical barriers to 

ensure that, in the case of a helicopter having to make an emergency landing in 

the sea, personnel will have a reasonable chance to survive and be rescued. 

 What shall the barrier eliminate or prevent (left hand side)? 

o The barriers shall eliminate or prevent unprotected exposure of persons to the 

elements/weather if the helicopter ditches in the sea. 

o The barriers shall ensure that flights only depart when there is a reasonable 

probability that personnel can be rescued if there is an incident resulting in the 

helicopter ditching (or crashing) in the sea. 

o The barriers shall ensure that there are sufficient, competent and co-ordinated 

resources available to eliminate or prevent a failed rescue operation. 

 What shall the barrier reduce or mitigate (right hand side)? 

o A barrier shall be in place to rescue personnel. 

o The barrier shall ensure that persons are competent and able to escape from the 

helicopter. 
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o The barriers shall mitigate or reduce the consequences of personnel suffering 

from cold water immersion shock. 

o The barriers shall mitigate or reduce the consequences of personnel suffering 

from hypothermia or drowning. 

 How can the barrier be weakened or defeated? (Escalation factor) 

o Poor quality weather observations and forecasts, 

o Allowing a flight to commence if weather criteria for departure are violated, 

o Incorrect use of immersion suits allowing water to enter the suit, 

o Malfunction or incorrect use of the breathing equipment in the immersion suit, 

o Personnel not trained or attended refresher HUET training, 

o Rescue personnel are unable to locate the survivors. 

 How can weakening or defeating of the barrier be eliminated or prevented? 

(Escalation factor control) 

o Personnel are sufficiently trained to make reliable weather observation, 

interpret weather forecasts and make prudent decisions regarding departure 

criteria fulfilment prior to a flight commencing, 

o Supervisory activities are performed to ensure that competence is in place and 

that procedure requirements are followed, 

o  Personnel are trained and competent in the correct use of immersion suits and 

that warm protective clothing is worn under the suit, 

o That there are sufficient resources available to rescue personnel in the sea, 

o That immersion suits are correctly maintained and functioning, 

o That the refresher video before flights is paid attention to by the passengers. 

 What are the performance requirements of the barrier system? 

o Personnel shall have immersion suits that sustain life for the time required to 

complete a rescue operation. 

o Breathing system for underwater escape is dimensioned to provide sufficient 

air for the time it is reasonable to expect personnel will need to escape safely. 

o The resources can be mobilised to the site of the incident and perform a 

successful rescue before the persons succumb to the effects of adverse weather. 

 How can the barrier and performance requirements be tested? 

o The immersion suit and breathing system can be tested in a laboratory. 
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o The rescue system can be tested by effective exercise under conditions as 

realistic as possible involving the use of identified resources and mannequins. 

 Are there dependencies between the various barriers in the protection system or 

barriers being used more than once 

o The immersion suit is on both sides of the bow tie and in a number of the 

barrier paths. This is effectively only one barrier. The provision of the 

immersion suit, training and competence is on the left hand side while the use 

of the suit appears after the incident on the right hand side of the bow tie. 

Recommendations arising from this case 
 The 120 minutes requirement to rescue persons from the sea should apply for the 

entire helicopter transport route. This will require that new resources are made 

available for rescue in the Barents Sea especially for long haul flights exceeding ca. 

120 – 140 nautical miles from SAR helicopters based onshore.  

 Departure criteria should be developed for the entire flight path with regard to being 

able to rescue persons in the case of a ditching or accident rather than only for the 500 

meters safety zone around the facility. The departure criteria should be based on 

limiting parameters like; sea state, helicopter stability with floatation deployed, wind 

direction and speed, air and sea temp, visibility, lightning forecast, polar low forecast, 

availability and operational limitations of air and sea rescue resources. 

 Consider providing a voluntary training course where personnel can familiarise 

themselves with the effects of cold water immersion (CWI), develop tolerance to cold 

water and more realistic conditions when training for escape from a submerged 

helicopter. This could include wind, waves, simulated rain, darkness and sound 

effects. There may be a case to review how personnel can prepare themselves for a 

situation where escape and evacuation from a helicopter is necessary. Exposing 

oneself to cold water at increasingly lower temperatures can improve tolerance to the 

effects of cold water immersion [7 & 45]. Preparing oneself mentally for the situation 

may also improve probability of survival. Another issue is that one should be 

physically fit to deal with the effort that is required to perform a successful escape 

under water [7 & 45]. It is important to show care when drawing conclusions from 

observations in actual accident situations.  The sole survivor of the Newfoundland 

helicopter may illustrate the benefits of familiarisation with and tolerance of cold-

water immersion situations [39 p124]. 
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Threats not discussed in this bow tie analysis 
 The threats that may result in a helicopter ditching or crashing in the sea are not 

included in this analysis. 

6.3 Barrier analysis of lifeboat evacuation 
There are important lessons that can be learnt from previous evacuations where lifeboats have 

been launched or attempted launched.  The following historical events will be taken into 

consideration: evacuation of Alexander Kielland [6 & 34], Ocean Ranger [35] and West 

Gamma [6]. The incidents of release mechanism malfunction on Veslefrikk B & Kristin will 

also be considered [36]. Finally experience with the rescue of persons in connection with the 

loss of the ferry Estonia is considered [7]. 

Alexander Kielland 
The semi-submersible accommodation facility, Alexander Kielland capsized during a severe 

gale on 27th March 1980 when it lost one of five pontoon legs. The rig capsized within ca 20 

minutes of a leg breaking away providing little time for an orderly evacuation. There were 

123 fatalities and 89 survivors of the accident [6 p100]. The wind was 16-20 m/s with waves 

between 6 to 8 meters [34 p14].  

Lifeboats were attempted launched but suffered severe accidents due to failure of release 

hooks and insufficient ability to manoeuvre away from the platform resulting in severe 

damage to the lifeboats. Four lifeboats were launched of which one was released successfully 

after the wheelhouse was crushed giving access to a hook that had not released. The three 

other lifeboats were crushed when colliding with the platform prior to release. A fifth lifeboat 

was released after the rig had capsized. The fifth lifeboat was also capsized but persons in the 

sea swam to the boat and righted it [34 p16]. The incident demonstrated that in harsh weather 

conditions davit launched lifeboats may be difficult to release satisfactorily and that it is 

difficult to rescue personnel from lifeboats using traditional standby or platform support 

vessels [6 p101]. The release hook design has been changed since the accident. However, 

hook release is critical in a two fall system were both hooks need to be released almost 

simultaneously. This is still an issue with today’s davit launched lifeboats and extensive work 

has been done studying the issues critical to successful release [76]. Insufficient propulsion of 

the lifeboats led to collisions with the platform and many were damaged. The issues related to 

lifeboats in this accident increased the momentum to develop free fall lifeboats as an 
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alternative to davit launched lifeboats [6 p101]. Lifeboat redundancy or over capacity 

requirements should be the same for all types of offshore facilities [34 p53].  

Safety training was identified as deficient and unsatisfactory. The amount of safety training 

for persons involved in the accident varied widely. The statistical material available is too 

limited to draw qualified conclusions on the effect of safety training on the survivability of 

personnel in this particular accident [34 p65]. However, the commission did agree that the 

safety level would increase if all personnel attended safety training [34 p68]. The 

investigation report recommends enhanced safety and professional training [34 p6].  

Other observations from the Alexander Kielland accident are addressed briefly here. It was 

observed that 8 persons used survival suits, 7 of them survived. Of the 8 persons using 

survival suits, only one person wore it correctly [34 p58]. Standby vessels were unable to 

perform their intended task due to weather conditions. The effort of the crews on helicopters 

in the rescue operation, were considerable and in the autumn of 1981 a permanent 24 hours 

helicopter rescue service was implemented at the Ekofisk field [34 p9]. 

West Gamma 
The jack-up rig, West Gamma, was lost in a storm on 21st August 1990 while being towed in 

the North Sea. The maximum wave height was reported to be ca. 16m and deteriorating to a 

significant wave height Hs of over 10 meters. The helideck had collapsed and it was 

considered unsafe to launch lifeboats due to the sea breaking over the main deck. The 

personnel on board performed an improvised evacuation by donning survival suits and 

jumping into the sea where Fast Recovery Craft (FRC) rescued them. All 49 crew onboard 

West Gamma were rescued [6 p106]. Weather according to Esvagt web site: waves up to 9-12 

meters, wind 55-60 knots. Esvagt took part in the rescue operation [100]. 

Ocean Ranger 
The Ocean Ranger capsized 15th February 1982 in a severe storm off New Foundland. In the 

case of the Ocean Ranger it was attempted to bring a lifeboat alongside an ERV in maximum 

combined sea conditions of 55 ft (16,8m) waves, occasionally up to 65 ft (19,8m) waves [35 

p55] and ca 75 knot winds [35 p58]. These weather conditions are classified as hurricane or 

force 12 on the Beaufort scale. In an attempt to transfer persons from a lifeboat to the standby 

vessel Seaforth Highlander, the two collided several times. The motion of the standby vessel 

and sea pressed the lifeboat away. It proved difficult to bring the lifeboat along side and it was 

not possible to rescue personnel to the standby vessel. Men climbed out of the lifeboat 
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resulting in a loss of stability and it rolled over and capsized [35 p62]. The lifeboat was found 

later on with signs of extensive damage, a large hole in the bow, a crack down the bottom of 

the hull and water was flowing freely through the lifeboat [35 p 67]. There were 84 persons 

on the Ocean Ranger, none of who survived [35]. 

Estonia 
The Estonia ferry disaster in the Baltic Sea on a route between Tallinn and Stockholm 

occurred on 28th September 1994 at approximately 0115 hrs when the vessel took in water, 

lost stability, rolled onto its starboard side and sank. This happened within a time span of ca 

30 minutes. The sea temperature was ca 12°C, the wind was about gale force at 18 – 20 m/s 

and the significant wave height was between 3 and 4 meters. Lifeboats could not be launched 

due to a severe list and life rafts were deployed with varying success. Mainly SAR helicopters 

and rescue men performed the rescue of persons in the sea. During the rescue operation most 

of the rescue men became fatigued while being buffeted by waves and when helping cold and 

incapacitated survivors. In addition some of the rescue men were injured in collisions with 

lifeboats while searching for survivors. Only 137 of the 989 persons onboard the Estonia 

survived the disaster [7 p4-8]. 

West Vanguard 
It is only fair to mention that during the shallow gas blow out on the West Vanguard on 6th 

October 1985, personnel evacuated in two lifeboats and were subsequently transferred to the 

standby vessel in good weather conditions [6 p84]. 

Veslefrikk B/Kristin 
During testing of the release mechanism for free fall lifeboats on Veslefrikk B & Kristin in 

December 2008 and January 2009 it was discovered that it was not possible to release and 

launch the lifeboats. The lifeboats had originally been installed, tested and commissioned in 

2005. They had been sent onshore for modification due to weaknesses identified in the 

lifeboat superstructure. This had increased the weight of the boats and when returned to the 

offshore facility, they were not installed in their original positions. Mechanical alignment of 

the release mechanism was shown to be critical. In this case, necessary barriers were in place 

to eliminate the chance of failure to launch in an emergency situation [36]. 

Observations  
Alexander Kielland:  

 Davit launched lifeboats difficult to launch. Hook improvements made post accident. 
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 The accident accelerated the development of free fall lifeboats.  

 The effect of safety training on survivability of personnel considered but no 

conclusive evidence of effect. Safety training requirements enforced after accident. 

 Weather: wind 16–20 m/s, waves 6-8 m. 

West Gamma:  

 Rescue from sea by FRC/MOB boat was possible. Lifeboats inaccessible, helideck 

damaged, helicopter rescue from facility not possible due to motion of legs. 

 Weather: wind 55-60 knots, waves up to 9-12 meters. 

Ocean Ranger:  

 Lifeboat damaged in collision with standby vessel. Personnel released seat belts and 

climbed out causing lifeboat to capsize. All men were subsequently lost. 

 Lifeboats are designed to be self-righting if all personnel are strapped into their seats 

and no significant amount of water in the boat [35 p19]. 

 Hurricane weather is a limiting factor for transfer of personnel from LB to ERV. The 

safe option may be to ride out the storm even with 3rd generation ERVs. 

 Weather: Hurricane, wind speed up to 75 knots, wave height 16,8 to 19,8 meters. 

Estonia:  
 Rescue men became fatigued. 

 Rescue men injured by collision with lifeboats. 

 Weather: gale force 18 – 20 m/s, significant wave height 3 – 4 m. 

West Vanguard 

 Successful evacuation was achieved with davit launched lifeboats. No casualties in 

connection with the use of the lifeboats. 

Veslefrikk B & Kristin 

 Release mechanism failure detected before an incident requiring evacuation. This 

demonstrates the importance of barriers to detect similar situations. 

Summary 

 Ride out a storm if unsafe to transfer personnel from lifeboats to vessels or 

helicopters.  

 Caution to be taken as sea conditions deteriorate in order to avoid collision between 

ERV and lifeboats. 
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 FRC/MOB boat rescue of persons is possible to a certain extent in adverse weather 

conditions. 

 Caution to be taken when helicopter rescue men approach a lifeboat in the sea. 

Analysis of lifeboat evacuation 
In this section an evacuation involving the use of lifeboats is analysed. Two methods of 

analysis, event tree and bow tie, will be used in support of each other to illustrate the case. 

The event tree is shown in figure 34 and the bow tie in the diagrams in figures 35 to 38. This 

case only considers the situation from the point in time where it becomes necessary to 

evacuate the installation. It is, of course, important to operate the facility with the utmost 

caution in order to avoid the need for evacuation and subsequent rescue of personnel. 

This is a simplified event tree and would be further developed during thorough risk and 

emergency preparedness analyses. Three initial paths are identified in the event tree: 

1. Lifeboats launched successfully, sail to emergency response vessel, 

2. Lifeboats launched successfully and experience ice accretion, 

3. Not possible to launch lifeboats due to ice/snow or failed release mechanisms. 

In the event tree in figure 34,  the  outcomes  are  “rescue”  or  “fatalities”.  The  outcome  “rescue”  

indicates success in rescuing the personnel who have evacuated in lifeboats. The outcome 

“fatalities”  indicates  that  there  is  a  probability  that  rescue  may  be  significantly delayed or not 

possible leading eventually in both cases to potential fatalities.  

 
Figure 34, Event tree for lifeboat evacuation 
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First the paths 1, lifeboats launched successfully, sail to emergency response vessel, and path 

2, lifeboats launched successfully and experience ice accretion, will be analysed using event 

tree and bow tie. Secondly the consequences of an unsuccessful rescue will be analysed using 

bow tie alone. Finally path 3, not possible to launch lifeboats due to ice/snow or failed release 

mechanisms, will be analysed using both event tree and bow tie. 

Event tree path 1 - Lifeboats launched successfully, sail to emergency response vessel 
The desired path in an evacuation situation is shown in the top path in the event tree in figure 

34. The lifeboats are launched, manoeuvred away from the stricken facility, meet up with an 

ERV and personnel are transferred from the lifeboats to the vessel. Alternatively personnel 

are rescued by helicopter from the lifeboats and transferred to either the ERV, another facility 

in the vicinity or to the shore. If the weather is harsh special consideration will need to be 

given to the method of transfer of personnel from the lifeboat to the ERV. If the ERV is 

equipped with a slipway in the stern for retrieval of lifeboats from the sea, this will be the 

preferred method of disembarking personnel. ERVs equipped with a slipway are able to 

perform lifeboat retrieval in conditions up to wave heights of 11 to 12 m. [J03] The decision 

to transfer personnel will be taken by the captain of the ERV based on the sea state. Special 

attention will need to be given to avoid collision between lifeboat and MOB boat or the ERV. 

Attention is drawn to the experience during the Ocean Ranger and Alexander Kielland 

accidents [6]. Transfer directly between a lifeboat and an ERV that is not equipped with a 

slipway may not be feasible once the waves have passed 5 to 6 m. Caution must be exercised 

if attempting a transfer in these conditions. The issue of lifeboat stability and self-righting 

properties are also important. Loss of life has occurred when persons unfasten their seat belts 

and move to the exterior of a lifeboat. Ocean Ranger incident is a reference case [35].  

Attention must also be given to the safety of the helicopter rescue man and the personnel who 

are lifted either directly from the lifeboat or from the sea. There are issues threatening the 

safety of the rescue man e.g. sharp deluge nozzles and inaccessible hatches on existing 

lifeboats models [J07]. These issues may be resolved by close cooperation between rescue 

personnel, designers and manufacturers of lifeboats. Injury of the rescue man if colliding with 

the lifeboat may also be of concern as was observed in the Estonia disaster [7]. If it is 

necessary to retrieve personnel from lifeboats in harsh conditions, it may be necessary for 

persons to leave the lifeboat and enter the sea for rescue by MOB boat or FRDC. This is 

potentially a less safe situation than staying onboard the lifeboat especially in rough sea or 
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very cold conditions. A dry situation is preferred to a wet evacuation. Care would need to 

taken that the person does not drift off and become lost. 

In situations of harsh weather it may be necessary to ride out the weather and wait for a better 

operational window to rescue personnel from lifeboats. This may be a situation lasting from 

hours to days and needs to be considered when equipping lifeboats for prolonged survival 

onboard. The issue of ice accretion may be a threat when riding out a storm and is discussed 

in event path 2 below. 

Event tree path 2 - Lifeboats launched successfully and experience ice accretion 
The stability of lifeboats could be impaired due to ice accretion. The icing may not be serious 

enough to impair stability and the lifeboat could sail to the ERV and follow the analysis in 

path 1 in figure 34. If ice accretion is serious and a threatening layer is built up, the lifeboat 

may experience reduced stability. Air captured in the ice will normally mean that the ice has a 

lower density than seawater. Capsizing may not be likely but cannot be excluded. However, 

an unstable situation with the lifeboat potentially lying on its side and rolling slowly can be 

expected. This situation is particularly dangerous if the lifeboat is damaged and there is free 

water inside. This type of situation may threaten stability even further if passengers release 

their seat belts. The self-righting property of lifeboats is dependent on the occupants 

remaining strapped into their seats. A worst case scenario may be one of serious impairment 

of stability, persons releasing seatbelts further reducing stability and self-righting ability 

leading eventually to a situation out of control and persons leaving the lifeboat, possibly in 

panic. It is important that the behaviour of a lifeboat experiencing ice accretion is known and 

that personnel are prepared to deal with the situation before it becomes a threat. 

If icing conditions prevail at the time of an evacuation, this may also affect the performance 

of MOB boats, FRDCs and ERV. It is of equal importance that the stability of these vessels is 

studied for ice accretion and measures are taken to mitigate and reduce the consequences. 

Bow tie analysis of path 1 and 2 
The bow tie analysis in figure 35 examines means to prevent the negative development of 

path 1 and 2 in the event tree, figure 34. According to the bow tie method the hazard is 

defined  as  “evacuation”.  The  fact   that  personnel are on a facility offshore inherently means 

that they may at some time need to be evacuated as the result of another threatening incident. 

If an evacuation becomes necessary the persons will need to be rescued and taken care of. The 

top  event   is   therefore  “unable  to  rescue  persons”.  The threats are simplified to sea state, ice 
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accretion conditions and visibility. Any one of these threats could lead to delay or failure of a 

successful rescue. 

The sea state is a threat to the rescue operation and may not allow the transfer of personnel to 

the ERV. If a SAR helicopter is used as a threat control to rescue persons from the lifeboat an 

escalation factor may be violent movement of the lifeboat threatening the safety of the rescue 

man and person to be hoisted. In the same manner, an ERV may be used to rescue personnel 

from the lifeboat. An escalation factor defeating the use of the ERV may be the operational 

window for personnel transfer from the lifeboat. The sea state could render personnel transfer 

to the ERV unsafe or even impossible. For both cases, SAR and ERV rescue, an escalation 

control factor could be training personnel to leave the lifeboat in an orderly manner and swim 

away for hoisting to the helicopter or rescue by a MOB boat. A preferred escalation control 

factor would be to increase the operation window of the ERV by selecting a vessel that has a 

stern slipway for retrieval of the lifeboat. 

Ice accretion on the lifeboat is a threat that may lead to an unsafe situation. As a threat control 

in the case of ice accretion on the lifeboat, ice may be removed manually, the lifeboat may be 

protected with an ice repellent coating or de-icing heating may be installed to avoid ice 

accretion [43]. Other threat controls or barriers in this case would be to rescue the persons 

from the lifeboat before the ice accretion leads to situations described in the event tree path 2. 

An escalation factor defeating the SAR and ERV would be that icing conditions could 

potentially threaten both. The escalation factor control is then to have de-icing in operation on 

the helicopter and icing protection measures on the ERV. In addition the stability tolerance of 

the ERV must be known. This would define the operational window for the ERV in ice 

accretion conditions. 

Visibility is a prerequisite to perform a rescue operation and poor visibility is shown as a 

potential threat. Poor visibility is a threat to all operations involving the transfer of personnel 

from a lifeboat to either a SAR helicopter, ERV or a MOB boat. Particularly in the case of a 

polar low or heavy snow showers during evacuation, visibility would probably be impaired. 

Visual aids in the form of radar, night vision goggles (NVG) or forward-looking infrared 

cameras (FLIR) are threat controls that may prevent the top event, unsuccessful rescue. 

There are many barriers that may prevent the top event in this case, however one does not 

have the means to totally eliminate the threats. The successful use of technical barriers is 

dependent on operational barriers like adequate maintenance, training and competence. In 

addition consideration may be given to implementing additional operational barriers taking 
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into account the weather forecast and planned activity in order to reduce the combined 

probability of an evacuation, poor weather and low visibility. This also applies for the 

situation of harsh weather and icing conditions. These operational barriers would also rely on 

training and competence of the personnel interpreting weather forecasts, planning activities 

and making informed decisions on operations allowed under the prevailing conditions.  

Typical performance requirements for these barriers may be a minimum operational window 

for the ERV, e.g. possible to pull a lifeboat into the stern slipway in wave heights up to 11-12 

meters. The Norwegian Meteorological Institutes data for the Barents sea indicates that 

significant wave height Hs is greater than 5 meters in 4,6% of the year in the east (72.58°N, 

33.10°E) and 6,61% of the year in the south west (71.58°N, 19.53°E), predominantly in the 

period October to March [51]. Performance requirements would need to be defined in more 

detail in the emergency preparedness analysis for all of the barriers involved in the total 

evacuation and rescue system. 

 
Figure 35, Threats that may hinder the rescue of persons evacuated in lifeboats 
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The consequences of delayed or failure to rescue the personnel in the lifeboat are examined in 

figure 36. If an evacuation is necessary and persons have to spend time in a lifeboat before 

being rescued there are a number of physiological issues that may arise, e.g. seasickness, 

dehydration, hunger, hypothermia and potentially fatality. Some or all of the persons in the 

lifeboat would almost certainly experience some of these consequences if it became necessary 

to ride out the weather while waiting for a window to rescue them. Depending on the 

operational window of the ERV and the SAR helicopter, it could be necessary to wait for a 

period of hours to days. In this case anti-seasickness medication, water, food, immersion suits 

and warm clothing are required as recovery measures to mitigate and reduce the 

consequences. Seasickness if untreated will lead to dehydration and faster loss of body heat 

potentially resulting in hypothermia. Water is essential in this situation, preferably warmed 

and mixed with nutrients. Food is not an immediate issue but will increase the well being of 

the occupants. One should bear in mind that personnel have an increased energy requirement 

in cold environments. This should be reviewed when equipping lifeboats for operation in cold 

and harsh environments. It is normal for personnel to wear immersion suits when mustering 

prior to evacuation and there are normally extra suits available at the lifeboat station. Spare 

suits and blankets should be considered stored in the lifeboat in order to allow for damaged 

suits or the need for extra insulation. This may be a particular issue when operating towards 

the northeast where air temperatures below -30°C can be expected. In addition to the 

physiological consequences discussed above, ice accretion could become a threat at any time 

while riding out the weather depending on the prevailing conditions. 

 
Figure 36, Consequences of not rescuing persons evacuated in lifeboats 
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Event tree path 3 - Not possible to launch lifeboats due to ice/snow or failed release 
mechanisms  
The  “fail  to  launch”  event  is   identified as a possible top event and is illustrated in path 3 of 

the event tree in figure 34 and in bow tie diagrams in figure 37 & 38. The threats in this case 

are simplified to the lifeboat freezing fast in the davit or launching skid and failure of the 

release mechanism. These are critical events and barriers need to be identified to eliminate 

and prevent the threats. Numerous methods, like manual removal of ice and snow, infrared 

heating, hot water or steam removal of snow or ice and repellent coatings have been identified 

and function as barriers to eliminate and prevent the top event [43]. Ideally, the lifeboats 

should be installed in a shelter on the facility as has been done on some platforms, e.g. Polar 

Pioneer and Goliat FPSO. A dual release mechanism should be installed as a threat control 

barrier to eliminate the threat of failure to release. An example of an escalation factor for the 

dual release mechanism could be insufficient temperature tolerance of the hydraulic fluid used 

in the release mechanism thereby defeating the barrier. Both of the technical barriers need to 

be supported by preventive threat controls like inspection and maintenance that are 

operational barriers. Escalation factors could typically be insufficient maintenance procedures 

or lack of competence among technicians. Typical performance requirements for these 

barriers may be the amount of ice that can be removed by a heating system, the lowest 

temperature at which the release mechanism is operable, frequency of inspection and 

maintenance and defined maximum overrun of due date for this work.  

 
Figure 37, Barriers to eliminate and prevent failure to launch lifeboats 

It is also necessary to identify barriers in order to reduce or mitigate the consequences. A 

“failure to launch” situation is critical and there are alternative means of evacuation, for 

example escape chutes, life rafts and ladders to the sea for this event or for personnel who are 

unable to reach the lifeboats. This is a final barrier against personnel being stranded on the 
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stricken facility without a means to evacuate. Examples of performance requirements for 

these barriers would typically be the operational window and time to deploy. Failure of the 

release mechanism is particularly critical if all personnel are in the lifeboat, the release 

mechanism is activated but the lifeboat does not launch [36 p15].  

 
Figure 38, Barriers to mitigate the consequences of failure to launch lifeboats 

In this situation it is impossible to know why the lifeboat has failed to launch and it is not 

clear what is a safe way to proceed. The lifeboat could be launched suddenly due to vibration 

or weight shift of personnel moving. Single mode of failure and deficient maintenance of the 

release mechanism was identified in the fail to launch incidents on Veslefrikk B and Kristin. 

Summary of the identified barriers 
Barriers to avoid unsuccessful evacuation and rescue 

 Protection and maintenance of lifeboats to ensure availability and reliability for 

evacuation. 

 Training and competence of personnel in issues specific to operation, evacuation, 

rescue and survival in the Barents Sea. 

 Provision of sufficient resources to aid in a rescue operation. 

Barriers to avoid escalation of situation  

 Protection against and detection of ice accretion. 

 Means to prevent seasickness, dehydration and hypothermia amongst survivors 

Provide alternatives to lifeboat evacuation. 

This barrier analysis has addressed the following issues: 
 What is the barrier? (System and elements) 

o A system to evacuate and rescue personnel from a stricken facility. 
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o The elements in the barrier system are lifeboats, life rafts, helicopters, 

emergency response vessels, MOB boats, FRDCs, procedures and emergency 

preparedness plans. 

 What shall the barrier eliminate or prevent (left hand side)? 

o The barrier system shall eliminate and prevent the failure to evacuate from a 

facility. 

o The barrier system shall provide suitable means to rescue personnel and avoid 

a situation where it is not possible to perform a rescue operation. 

 What shall the barrier reduce or mitigate (right hand side)? 

o The barrier system shall ultimately prevent the loss of life in connection with 

an incident requiring evacuation of a facility. 

o The barrier system shall ensure that personnel can survive for a prolonged 

period in a lifeboat in adverse conditions. 

 How can the barrier be weakened or defeated? (Escalation factor) 

o Ice accretion affecting the performance of a lifeboat, helicopter or an ERV and 

its support vessels can defeat the ability to rescue personnel, 

o Poor visibility making it difficult to see and find lifeboats and personnel, 

o Not taking into account the weather forecast. 

 How can weakening or defeating of the barrier be eliminated or prevented? 

(Escalation factor control) 

o Ensure competence on issues specific to operation, evacuation, rescue and 

survival in the Barents Sea, 

o Implement operational limitations for activities on the facility when conditions 

may lead to unsuccessful evacuation and rescue, 

o Provision of sufficient SAR helicopters with de-icing equipment, 

o Provision of ERV with stern slipway, 

o Study stability of all vessels and craft for effects of ice accretion and identify 

limiting operation conditions, 

o Provision of vision aids and training of personnel to use them, 

o Training of personnel in retrieval of lifeboats onto stern slipway of ERV, 

o Training of personnel to enter sea to assist in their own rescue, 

o Training of rescue men, MOB boat and FRDC crew to pick up personnel in 

harsh conditions, 
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o Protection of lifeboats to avoid freezing in launch system, 

o Design and maintenance of lifeboat and release mechanism. 

 What are the performance requirements of the barrier system? 

o Minimum operational window for helicopter and ERV to enable rescue of 

personnel from lifeboats or sea. 

o Minimum requirements for survival time for personnel in a lifeboat. 

o Defined performance requirements for availability and reliability of the 

equipment. 

o Performance requirements would need to be defined for the individual 

elements of the barrier system in a thorough emergency preparedness analysis. 

 How can the barrier and performance requirements be tested? 

o Performing emergency preparedness exercises under varying conditions to 

monitor the operational barriers. 

o Testing and maintenance of the equipment to monitor the technical barriers 

 Are there dependencies between the various barriers in the protection system or 

barriers being used more than once? 

o The operation of the MOB boat and FRDC are dependent an operational ERV. 

o The SAR helicopter and ERV appear as a barrier both against a sea state and 

ice accretion threatening the personnel in the lifeboat. The barriers for avoiding 

a failed rescue are limited. 

Recommendations arising from this case 
 Operations should be planned in order to avoid evacuation in adverse conditions. All 

activities should be planned such that accidents do not occur, however some 

operations have a greater inherent risk than others and this should be given particular 

consideration. 

 Increase helicopter resources in area, SAR helicopters should have all-weather 

capability, i.e. AWSAR helicopter.  

 Train and exercise maritime rescue personnel to operate vessels, ERVs, FRDCs and 

MOB boats in harsh weather and when ice accretion occurs. 

 All activities in the Barents Sea should be supported by ERVs with stern slipway. 

 Involve rescue men in the design of lifeboats in order to increase safety during rescue. 
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 Identify resources that may be available to assist in a rescue operation even though 

they are not under the control of the operator of the facility. These may be coast guard, 

fishing or merchant vessels in the vicinity.  

 Lifeboats should not be brought alongside an ERV if Hs is over ca. 4m. 

 It is important that passengers in lifeboats follow commands of coxswain so as not to 

impair stability. 

 Due consideration and caution should be used if deciding to leave a lifeboat and enter 

sea for pick up by helicopter, FRDC or MOB boat in cold and harsh weather. 

Threats and barriers not discussed in this bow tie analysis 
 The potential threat posed by sea ice to the use of lifeboats, ERVs and support craft. 

 Operational procedures to eliminate or prevent the need to perform an evacuation and 

subsequent rescue operation. 

 The availability of other resources, e.g. coast guard vessels, fishing vessels and other 

maritime resources and aircraft for surveillance of the situation has not been 

addressed. These resources are not under the control of the operator of the facility and 

their position in the event of an incident is random. 

 Sufficient propulsion, including reliability of engine, to safely manoeuvre lifeboat 

away from the facility after launch. 

6.4 Evacuation 
Evacuation is normally carried out according to a predefined and prioritised method as 

described in section 5.4. In the Barents Sea there are currently few helicopter resources to 

assist in both precautionary and emergency evacuations. There may therefore be a higher 

probability than in other areas of the Norwegian continental shelf, that lifeboats may be used 

at some time for a precautionary evacuation where this would have been conducted using 

helicopters elsewhere [J08]. The person responsible during a situation may be in a position 

where he/she has to make a decision between launching lifeboats as a precautionary 

evacuation or not doing so and exposing more persons than necessary to the risk of the 

incident. It is important that the possibility is given due consideration and the emergency 

preparedness plans take this into account. Being able to retrieve personnel safely from 

lifeboats in the sea is of the utmost importance. The issues of ice accretion are an aggravating 

factor that may impair the use of the lifeboats and emergency response vessels [43 & 65]. 
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6.5 Rescue 
It is generally recognised that helicopters can operate and rescue persons from the sea in 

almost any weather condition, except in fog or low visibility as discussed in section 5.6.3, 

whereas the capability and performance of rescue vessels is limited by deteriorating sea states 

[63 p76]. It was already identified in the investigation report after the Alexander Kielland 

accident that helicopters from onshore arrived too late to rescue survivors from the sea. The 

commission recommended that rescue helicopters be stationed offshore [34 p70]. There are 

challenges regarding having a SAR helicopter stationed on an offshore facility, especially if 

there  isn’t  a  hangar  available  for   the  helicopter.  The  challenges  include  wind,  motion  of   the  

platform, corrosion, snow and ice and some parties in the industry do not recommend 

stationing of SAR helicopters offshore due to safety issues [74]. However, offshore SAR 

helicopters have been operated successfully for many years on facilities with a hangar. There 

is general agreement that the SAR helicopters are a considerable strengthening of offshore 

emergency preparedness. It is unfortunate for the industry as a whole that this service is not 

available for all fields and areas [41 p2]. 

6.6 Helicopter transport 
Helicopter transport poses a significant contribution to the total risk for a person employed 

offshore. It  is  the  government’s  ambition  that  helicopter  safety on the Norwegian Continental 

shelf shall be a leading reference standard with regard to risk reducing measures [28 p315]. 

Regulation of helicopter transport 
The regulation of helicopters as aircraft and their operation is organised within the 

responsibility of the Norwegian Civil Aviation Authority, not as part of petroleum activities 

regulated by the Petroleum Safety Authority. However, there is a general requirement in the 

petroleum regulations that transport to facilities involved in the petroleum activities shall be 

carried out in a prudent manner [28 p315]. The Activities Regulation § 17 states that: “The  

operator shall ensure that personnel and supplies can be transported safely to, from and 

between facilities and vessels during placement, installation and use, and for the chosen 

disposal  alternative.  Transport  shall  be  coordinated  with  emergency  preparedness.” A white 

paper from 2001 expands on the responsibilities of the petroleum authorities (NPD in 2001, 

PSA from 2004) related to helicopter traffic.  Operators shall ensure that they have sufficient 

and proper transportation arrangements so that safety is maintained in the petroleum industry. 

The PSA is to regulate the safety requirements for helicopter activity that is clearly related to 
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the facility's safety [29 p31-33].  

The  Norwegian  government’s  vision  for  the  safety  of  helicopter  transport  on  the  Norwegian  

continental shelf has been stated as follows: “Passenger  transport  by  helicopter  in  connection  

with petroleum activities on the Norwegian continental shelf shall not result in loss of life or 

serious injury” [30 p36]. 

Helicopter activities outside of the 500 meters safety zone are not considered part of 

petroleum activities and the operator is only responsible for rescue within the 500 meters 

safety zone around the offshore facility. The responsibility for emergency preparedness 

related to the helicopter when it is in transit between the airport and the 500 meters safety 

zone falls outside petroleum legislation. It is considered an aviation operation and emergency 

response is governed by aviation regulations and civil rescue services [29 p106]. From a 

regulatory viewpoint, the Norwegian search and rescue service is responsible for rescuing 

persons in case of a helicopter accident in transit between an airport and the boundary of the 

500 meters safety zone around the offshore petroleum facility. This means that the rescue 

operation will be coordinated by one of the two Joint Rescue Coordination Centres, Sola and 

Bodø, and draw on resources from the 330 squadron Sea King helicopters, the SAR 

helicopters operated by the petroleum industry and vessels in the vicinity of the incident. 

In a white paper to Parliament, the government has stated an intention regarding emergency 

preparedness in the northern  areas  (Barents  Sea);;  “It is therefore important that participating 

companies and their sector organizations work systematically to reduce the risk of accidents 

and in the event of an incident and are able to handle (resolve/deal with) a crisis with their 

own resources to a greater extent than is necessary in other sea areas” [27 p101]. It is 

important to be aware that a white paper from the Government to Parliament is not law but a 

proposal or recommendation on a way forward and may be included in law at some stage. 

Currently no change is made in this area of legislation. 

In connection with exploration and operations in the Barents Sea, Statoil and ENI have 

established a SAR helicopter service in Hammerfest. There is 15 minutes mobilisation time 

when passenger transport flights are performed. Otherwise the mobilisation time for the SAR 

crew and helicopter is 60 minutes, however, they are usually airborne within 40 minutes [74]. 

The white paper of 2001 to Parliament regarding helicopter safety states that in the future it 

will be natural to evaluate the needs for search and rescue services that should be covered by 
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private interests as exploration activity moves further out on the continental shelf [29 p41]. 

In the white paper of 2001 regarding the future of the helicopter rescue service it is pointed 

out that the current regulations for petroleum activities on the Norwegian continental shelf 

give the authorities the necessary legal basis to require that rescue helicopters be stationed on 

facilities and define the functions such a helicopter should have. To date, no such 

requirements have been imposed on the industry. A prerequisite for such requirements being 

imposed is that it is considered necessary in order to ensure safety [32 p48-49]. 

Performance requirements for rescue of personnel from the sea 
The petroleum industry has identified the need to be able to rescue persons from the sea 

within 120 minutes inside the 500 meters safety zone [21]. This performance requirement is 

based on the limitations and safety margins related to immersion suits in use during helicopter 

transport. The OLF guideline indicates a pick up time of 3 minutes per person [74] from the 

sea leading to a total pick up time of ca 63 minutes for a helicopter with maximum 19 

passengers and 2 pilots. The sea conditions are directly comparable within the 500 meters 

safety zone and the sea over which the helicopter flies in order to reach the offshore facility. 

There is no logical safety reason why the 120 minutes requirement should not apply for the 

entire transport of personnel over water. The capability to rescue persons from the sea within 

120 minutes should be considered as a normal requirement for the entire helicopter flight 

path. However, there may be practical challenges providing a rescue capability within 120 

minutes in remote areas of the Barents Sea and the Norwegian Sea. 

In connection with the planned replacement of the Sea King helicopters in the public search 

and rescue service, a rescue ambition has been developed based on society’s  goal  that  it  shall  

be possible to start the rescue of 20 persons in distress within two hours at every point 150 

nautical miles beyond the baseline off the Norwegian coast. In addition, it should be possible 

to rescue two persons in distress all the way toward the outer boundary of the rescue 

responsibility area [31 p17]. 

Taking into consideration that the petroleum industry has identified a need to rescue persons 

from the sea within 120 minutes due to limitations and safety margins related to immersion 

suits, it would appear that there is a critical discrepancy between the performance 

requirements that industry have set for their rescue capability and the requirement that 

Norwegian authorities have set for the public rescue service.  
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If persons in a transport helicopter ditch/crash in the sea, they are wearing an immersion suit 

for protection. The public travelling on ships or civil aircraft are not protected apart from 

having flotation aid in the form of a life jacket. Offshore workers are more prepared and 

protected for an incident. There is, however, an important difference between persons 

travelling in civilian aircraft, passenger ships or ferries and the persons travelling on a 

helicopter to or from an offshore installation. The offshore workers on the helicopter have this 

as the sole mode of transport to and from their place of work and they are unable to choose 

otherwise [30 p36].  

6.7 Helicopter coverage 
The map in figure 40 shows the one hours flying range from Hammerfest, the Skrugard field 

and a hypothetical location in the east at 72,5°N/29°E. Hammerfest is shown because this is 

the current base for a transport and a SAR helicopter to cover operations in the Barents Sea 

[74]. Skrugard is expected to be developed and in operation by 2018 [77]. Skrugard has a 

strategically important location about halfway between the Norwegian coast and Bjørnøya. 

Almost all areas of the western part of the Norwegian Barents Sea sector and the Norwegian 

mainland can be reached within one hour from Skrugard. When this field is developed it will 

provide a unique possibility for refuelling of helicopters operating in this part of the Barents 

Sea. The national SAR helicopters will benefit and the capability to rescue persons far out to 

sea will be greatly improved. All fields that may be discovered within the range of Skrugard 

will also benefit. As mentioned in section 6.5 with reference to the 2008 report made for PSA 

regarding emergency preparedness, the offshore SAR helicopters have provided an important 

enhancement to emergency preparedness as mentioned in the 2008 report made for PSA [41]. 

Due to the location of Skrugard the facility should be built with a helicopter hanger so that it 

is possible either from the start of operation or at some later date to station a SAR helicopter 

onboard. Skrugard will most likely be able to achieve satisfactory coverage from a SAR 

helicopter in Hammerfest and a hangar on the facility may be difficult to justify economically 

unless considering the broader issues of rescue service to the north and west. An alternative to 

Skrugard would be to consider a SAR helicopter stationed on Bjørnøya. However, Bjørnøya 

is far from the mainland and there are challenges related to fog there. 

When considering wave data for the Barents Sea it can be expected that a SAR on Skrugard 

may be unavailable approximately 5 to 7% of the time assuming that when Hs is over 5 m the 

movement of the facility and wind may be approaching the limits for unfolding the rotor and 
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using the helideck. [51]. This is an extremely uncertain assumption as the exact met ocean 

data for Skrugard are not available in the public domain and the motion characteristics of the 

facility are not known yet. The potential for reduced visibility due to fog or heavy snow 

showers is also of concern. The time a SAR helicopter on Skrugard may be unavailable due to 

weather, however, is a far lesser fraction of the time compared to the greater fraction of the 

time when it would be available.  

 
Figure 40, Helicopter coverage with Skrugard and a facility in the east as offshore heliports 

As the petroleum activities move towards the east it will be necessary to establish a base for 

helicopter operations at airports like Berlevåg or Vardø, especially when considering the 

extremely remote locations towards 74,5°N/37°E. Both of these airports, Berlevåg and Vardø, 

have good regularity [J02]. Kirkenes is also an option, however, it would add ca 45 NM to the 

flight path compared to Vardø. An offshore facility located in the area of 72,5°N/29°E would 

provide similar benefits as Skrugard. At the present time there are no discoveries in the 

immediate vicinity. 

6.8 Effects of wind on helicopter flight 
The effect of wind on a flight from the coast to the extreme location in the northeast at 

74,5N/37E is considered in this section. The route from Berlevåg (BVG) to the remote 

location is considered. The distance one way is 260 NM, which is of interest in light of 

operational limitations and departure criteria for transport flights to this location. Flight times 

are based on a no wind situation and then being reviewed taking into account the effect of 
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wind on the ground speed of the helicopter using the calculations discussed in section 5.10.2. 

The flight is studied with three hypothetical wind cases of no wind, side wind and head/tail 

wind for a helicopter with a cruising speed of 145 knots and wind speeds between 20 and 50 

knots. Great circle routes have been used to calculate distance and headings. The flight path 

has been divided into four flight legs, two in each direction, of approximately equal length. 

As the heading changes continuously along a great circle route, an average heading for each 

leg has been used corresponding to the heading at the midpoint of each flight leg. This 

approach is considered acceptable as it provides a close estimate. The aim of the calculations 

is to illustrate the effect of wind on helicopter flight. The results need to be taken into account 

when evaluating the robustness of emergency preparedness, planning helicopter flights and 

defining departure criteria. The flight path is shown in figure 41 where routes are also shown 

from Hammerfest (HFT), Lakselv (LKL) and Kirkenes (KKN). The results of the calculations 

are shown in figures 42 & 43. 

 
Figure 41, Routes to location 74,5°N/37°E 

Mobilisation time, the time required to assemble the crew and get the helicopter airborne and 

the time on deck at the offshore facility, is not included in the analysis in this section. The 

total round trip flying time for 520 NM at 145 knots with various wind speeds is shown in 

figure 42. This information is of interest when evaluating medevac flight times and capability. 

The performance requirement is that the person should be in hospital within three hours [21]. 

The difference in time for the flight to reach the facility and return to the shore is not of 

interest in this case so long as the round trip time meets the performance requirement. As can 

be seen for this location, it is not possible to meet the performance requirement of 

transporting the patient to a hospital within 3 hours and compensating measures will need to 

be evaluated. The problem for this location is the distance, which is aggravated by wind. The 
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calculations show that in a constant head/tail wind situation, i.e. wind blowing along or in 

parallel with the route, ca 30 minutes will be added to the round trip time when the wind 

speed is 50 knots. For the case of a side wind blowing across the route, ca 15 minutes will be 

added to the round trip time for a wind speed of 50 knots. 

 
Figure 42, Flight duration between BVG and 74,5°N/37°E with head/tail, side and no wind 

In figure 43, the difference between the flight times for one direction (260 NM) is shown 

when taking into account a head or tail wind. These results are of interest when evaluating the 

rescue capability of a SAR helicopter under given conditions on the day of a planned 

transport flight. The number of passengers that the transport helicopter can carry will be 

driven by the performance requirement that all personnel shall be rescued from the sea within 

120 minutes of an incident occurring [21]. The faster the SAR helicopter can arrive at the 

scene of the incident the more persons can be rescued within the 120 minutes limit. The time 

taken to rescue one person is set to an average of 3 minutes [74]. A head wind on the flight to 

the scene of the incident will reduce the number of persons who can be rescued within the 

performance requirement of 120 minutes. A tail wind will lead to an increased number of 

persons who can be rescued within the performance requirement. 

It is also fair to consider the actual weather on the day of the flight. In calm weather with 

good visibility it may be possible to rescue a person in less than 3 minutes per locating and 

pick up of the individual. Similarly, as the weather deteriorates it may be prudent to consider 

more than 3 minutes per individual rescue. This should be a part of the departure criteria and 

assessed prior to the helicopter departing from the shore. This section has demonstrated how 
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the effects of wind should be taken into account when planning and optimising helicopter 

operations in an area with few available resources and relatively long routes. 

 
Figure 43, flight duration between BVG and 74,5N°/37°E with head/tail winds 

6.9 Analysis of rescue capability en route for long-range locations 
A potential solution in order to provide rescue capability for persons in the sea due to a 

helicopter ditching on long-range flights to remote locations is analysed below. This case 

considers a helicopter flight from Berlevåg airport (BVG) to a petroleum facility located at 

74,5N/37E. The example uses Berlevåg as the chosen airport due to it being an easily 

accessible airport with good availability regarding weather. Berlevåg is also the closest airport 

to the location 74,5N/37E. The distance from Berlevåg to the location is 260 NM. The 

reason for choosing the location 74,5N/37E is because it potentially is one of the most 

remote locations that may be considered for exploration in the near future. If it is possible to 

develop a procedure for rescue en-route to this location, rescue for all other locations will also 

be feasible.  

The proposed scheme requires a SAR helicopter at Berlevåg, an ERV en-route to the facility 

and an ERV at the facility. This is illustrated on the map in figure 44 below. The ERV located 

at the facility covers a number of emergency preparedness roles for example, detection and 

intervention of vessels on collision course with the facility, rescue of man-over-board and 

rescue of persons in the sea due to a helicopter accident on or near the facility.  
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Figure 44, Location of rescue resources 

It is currently considered possible for a SAR helicopter to locate and rescue a person from the 

sea in 3 minutes on average [74]. The time taken to locate and rescue persons in the sea using 

an ERV, FRDC or a MOB boat is considered to be longer than the 3 minutes required per 

pick up by a helicopter. In addition it should be taken into consideration that the time to locate 

and rescue a person increases as the weather deteriorates [40 p92]. It is not unreasonable to 

allow 5 minutes per person for rescue by a boat as it is potentially more difficult to observe 

individuals in the sea from a low position as is the case from the bridge of an ERV or even 

lower in the case of a FRDC and MOB boat. Location of persons in the sea becomes 

increasingly difficult as sea conditions deteriorate. If the weather is calm and the visibility is 

good, it may be possible to consider a shorter time for location and rescue of persons from the 

sea by FRDC or MOB boat. 

The following general assumptions apply for the case: 

 All persons are to be rescued from the sea within 120 minutes [20], 

 The maximum capacity of a transport helicopter is 19 passengers and 2 pilots, 

 The company performing a petroleum activity at the remote location is willing to 

relocate a SAR helicopter to the closest airport, 

 The company performing a petroleum activity at the remote location is willing to incur 

the operational cost of emergency response vessels equipped as described in this case, 

 There are benefits for the company in adopting this procedure (see pros and cons), 
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 Safety delegates and representatives of trade unions are involved in the process of 

developing the procedure. 

Rescue capacity for emergency response vessel 
The rescue capacity of an ERV equipped with a FRDC, and a MOB boat is taken from data 

sheets for existing vessels [103-107]. An ERV supported by a FRDC and MOB boat can 

rescue 18 persons from the sea within 120 minutes within a radius of 35 NM from its station. 

This is demonstrated by considering an incident at 35 NM from the ERV. The ERV is 

assumed to be on standby when the flight is taking place and can set sail for the incident site 

immediately upon receiving notification of the need for a rescue operation. The crews of the 

FRDC and MOB boat are to be alerted upon receipt of the notification. The FRDC is 

launched within 5 minutes and the MOB boat is launched within 10 minutes. The FRDC will 

reach the site of the incident within 65 minutes allowing 55 minutes to rescue 11 persons. The 

MOB boat will arrive within 85 minutes allowing 35 minutes to rescue 7 persons. The ERV 

will arrive at the scene within 105 minutes allowing 15 minutes to coordinate the retrieval of 

the FRDC and MOB boat together with the rescued persons. This is illustrated in figure 45 

where the elapsed time is shown along the horizontal axis. The lines and the left hand axis 

show the distances travelled by the vessel and rescue craft. The number of persons picked up 

(PUmob & PUfrdc) by the rescue craft are shown by the columns and the right hand axis. 

 
Figure 45, Time to travel 35 NM and rescue persons by ERV, FRDC & MOB boat 

The following assumptions apply for the ERV, FRDC and MOB boat: 

 ERV can operate at 20 knots in calm weather [103], 
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 ERV is equipped with 1 FRDC (e.g. MS DC12) that can operate at 35 knots, capacity 

24 persons (3 crew, 21 rescued persons), range 150 NM [104 & 105], 

 ERV is equipped with 1 MOB boat (e.g. MP-741) that can operate at 26 knots, 

capacity 10 persons (3 crew, 7 rescued persons), the range of this craft is unknown, 

but it is an assumption in this case that the craft can carry fuel to travel up to 50 NM 

and perform a rescue operation [104 & 107], 

 The sea state is such that performance of the ERV and the rescue craft is not impaired, 

i.e. significant wave height Hs should probably be less than 3 meters [103], 

 The FRDC and the MOB boat are equipped with necessary navigation aids to operate 

in the dark, 

 There is sufficient visibility to perform the rescue operation, i.e. there is no fog or 

snow showers and there is sufficient light or visual aids to locate the survivors in the 

sea even if it is dark, 

 FRDC and MOB boats require 5 minutes to locate and rescue a person from the sea, 

 The crew of the FRDC and MOB boats are trained and competent to navigate and 

operate these craft independently of the ERV, 

  The rescue craft perform a continuous rescue operation until all persons are rescued 

or reaching their capacity before returning to the ERV for offloading, 

 The rescue craft will not have to travel the same distance back to the ERV, as the ERV 

will sail towards the site of the incident. 

 
Figure 46 Combined rescue capacity for ERV with FRDC and MOB boat deployed 
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Figure 46 illustrates the rescue capacity for the ERV configuration for ranges between 0 and 

50 NM and a time limit of 120 minutes. Note that the capacity is capped at 21 persons as this 

case examines a helicopter incident. The FRDC is designed to rescue 21 persons within 120 

minutes inside of the 500 meters zone around the facility. 

Rescue capacity of a SAR helicopter 
The rescue capacity of a SAR helicopter can be assessed based on the time to mobilise the 

helicopter, time to fly to the scene of the incident and the number of persons to be rescued 

within the 120 minutes limit defined in the OLF guidelines [20].  

The following assumptions apply for the SAR helicopter: 

 SAR helicopter cruises at 145 knots [J05], 

 SAR helicopter can take off within 15 minutes (or less) after notification [74], 

 SAR helicopter requires 3 minutes to locate and rescue one person from the sea [74]. 

The ability to locate and rescue a person in 3 minutes is based on the survivor wearing an 

immersion suit fitted with a personal radio locator beacon (PLB), a strobe light and reflective 

material. 

A mobilisation time of 15 minutes leaves 105 minutes available to fly to the scene and rescue 

persons within a total of 120 minutes from entering the sea. A SAR helicopter travelling at 

145 knots can fly ca 250 NM in 105 minutes.  The number of persons who can be rescued 

within the limit is decreased the further the helicopter has to fly. The capacity in relation to 

flown distance and rescued persons is illustrated in figure 47. 

 
Figure 47, Rescue capacity for SAR helicopter along 260 NM route  
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Rescue scheme for a 260 NM long-range route 
Figure 44 earlier in this section, illustrates the location of the airport, SAR helicopter and the 

emergency response vessels. ERV1 is located at the facility while ERV2 is located 85 NM 

along the route from the facility.  The circles indicate the area where any one resource can 

rescue 18 persons alone. The areas between the circles require a combined effort from more 

than one resource. Figure 48 illustrates how the resources can be utilised to provide rescue for 

a total of 18 persons, from the sea within 120 minutes for all locations along this 260 NM 

route.  

Some improvements can be made to increase the robustness of the proposed rescue system. 

The ERV could be equipped with 2 fast rescue daughter craft instead of 1 FRDC and 1 MOB 

boat. This would improve the pick up capacity and the speed at which the craft would reach 

the incident scene. Also the crew are protected on a FRDC as it has a wheelhouse. 

Mobilisation time for the resources could be improved and both FRDCs could be launched 

within 5 minutes. These improvements could also be used to extend the range of the FRDCs 

and potentially achieve a higher passenger capacity along the route. 

 
Figure 48, ERV at 0 & 85 NM from facility, ERV speed 20knots, FRDC speed 35knots, 

MOB speed 26 knots, SAR speed 145 knots 

Location specific conditions  
 Low sea and air temperature in this area during winter. 

 Sea conditions are less severe than in the Norwegian Sea and western part of the 

Barents Sea. 

 Ice accretion due to sea spray or precipitation may be an issue. 
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 Special considerations should be given to the protective clothing worn by the crew of 

the FRDC and especially the MOB boat that is an open craft. 

 Attention must be paid to the weather conditions and a reliable weather forecast must 

be consulted prior to commencing the helicopter flight. 

 Sea ice occurs infrequently in the vicinity of the facility. There has been sea ice and 

icebergs in the vicinity of this location as recently as 2003 [46 p17]. 

Pros and cons for this solution 
Positive issues: 

 Rescue of persons in the sea is planned and available along the entire route, 

 Helicopter passenger capacity and range may be increased, 

 The second ERV can be a shared resource if exploration activity is planned by more 

than one operator within a reasonable area. 

Negative issues: 

 Extra cost is incurred for the second ERV, 

 There are extra costs associated with crew for both FRDC and MOB boat. 

Weakness with the case 
 This case does not assess the problems related to fuel requirements or alternative 

landing sites that are mandatory for the helicopter transport. These challenges are dealt 

with in section 5.9. 

 Time for vessels and helicopters to achieve cruising or maximum speed is not taken 

into account. This gives a slightly optimistic result. 

 The case does not assess the consequences of sea ice or icebergs in the area. 

 The risks of sending two small craft on a long-range rescue operation, potentially 50 

NM from the mother vessel, are not fully analysed or assessed. 

 The issue of finding crew members who are willing to perform this type of rescue 

operation has not been considered. 

Critical barriers for the success of this rescue scheme 
 Weather observations and forecasts providing reliable information about the sea state, 

ice accretion or sea ice and fog and snow showers affecting visibility. 

 Planning of the operation and the decision process before departure of the helicopter. 

 Training and exercise of personnel including maritime personnel to operate the vessels 

and the emergency preparedness personnel controlling the operation. 
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 Maintenance of the systems. 

Recommendations arising from this case 
Considerations should be given to building an ERV specially designed for support and rescue 

service for long-range flights in the Barents Sea. The vessel should be equipped with 2 

FRDCs and with helicopter in flight refuelling, HIFR. This will increase the robustness of the 

scheme and the safety level. 

For the case of Skrugard/Havis development in the western Norwegian sector of the Barents 

Sea the need for helicopter refuelling, a helicopter hanger and a permanent AWSAR 

helicopter on the installation should be considered. If and when a permanent installation is 

installed in the eastern part of the Norwegian area of the Barents Sea, its strategic position 

with regard to rescue operations should be considered in a similar manner to the 

recommendation for Skrugard/Havis. 

As a general safety precaution a limiting sea state should be evaluated and defined for this 

rescue scheme. OLF stipulates that when rescue of persons in the sea relies only on the use of 

an ERV, i.e. a SAR helicopter is not available, special considerations should be given to the 

use of this resource when the significant wave height is between 4,5 and 7 meters [23 p5]. It 

may not be prudent to plan a helicopter operation that may result in a long-range rescue 

operation in significant wave heights of 7 meters or more with an FRDC or a MOB boat. 

Discussion at Simon Møkster Shipping AS  
This section of the report regarding a rescue scheme using two ERV for rescue purposes on 

long-range helicopter flights was discussed with personnel at Simon Møkster Shipping AS. 

This was done in order to test the feasibility of the scheme and benefit from the experience 

the company has with operating vessels of a similar type considered deployed in the scheme.  

The   company   has   good   experience   with   the   operation   of   the   ERV’s   Stril   Poseidon,   Stril  

Herkules and Stril Merkur. The ERVs are equipped with a slip for retrieval of the vessel’s 

FRDC and MOB boat. The slip is also designed for retrieval of lifeboats from an offshore 

facility. Retrieval of craft from the sea using the stern slipway has been accomplished in sea 

conditions of 11 to 12 meter wave heights. Over 2000 of these operations have been 

performed in training and exercise without injury to personnel or significant damage to the 

craft. The FRDC and MOB boat maintain a speed higher than that of the ERV and sail into 

the slipway. In an emergency situation, lifeboats from an offshore facility can be pulled in on 
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the stern slipway allowing transfer of the persons to the ERV. The lifeboat is then dumped 

before pulling the next one in for transfer of persons. 

Standby duty alone is monotonous and additional tasks help to motivate the crew. Emergency 

preparedness or standby duty in the open sea both far from shore and an offshore installation 

may be a challenge to attracting and retaining crew. Where possible it is important that the 

crew on the vessel are involved in operations of the fields in addition to emergency 

preparedness duties. This breaks the monotony and increases crew motivation. In addition to 

daily operations onboard, training and exercise of emergency preparedness and oil response 

duties, two of the vessels are used in operations to connect shuttle tankers to the off-loading 

system for shipping of stabilised crude from the field where they are stationed.  

The proposed scheme may require an increased number of crew on the ERV as both the 

FRDC and MOB boat are considered used in a rescue operation. The ERV would need to 

have sufficient crew remaining onboard to allow operation of the vessel in a rescue mode.  

The FRDC and MOB boat need to reduce speed when sea conditions dictate. Speed reduction 

is necessary for safety reasons in order to avoid injuries and physical exhaustion of the crew. 

Breaking waves and the craft slamming in the sea would call for speed reduction. This can 

typically occur already at significant wave heights of 2 to 3 meter for the FRDC and MOB 

boat. As the sea state worsens, there will  be  a  “break  even”  wave  height  after  which  the  ERV  

will be able to maintain a higher speed than the FRDC or MOB boat under the prevailing 

conditions. As the sea state deteriorates it may be a better solution to keep the FRDC and 

MOB boat onboard the ERV while it sails towards the scene of the incident. The FRDC and 

MOB boat would only be deployed shortly before reaching the scene of the accident. This 

would reduce the range that the vessel can cover within the 120 minutes limit for rescuing 

persons from the sea to the region of 20 to 25 nautical miles. 

Operational limitations of the scheme need to be evaluated and understood prior to any 

decision to employ this or a similar method. Understanding of the operational limitations 

would need to be maintained and adhered to if the scheme is to be employed. The sea state 

would need to be evaluated thoroughly by the captain of the ERV before a flight to the 

installation is initiated. The captain would need to make a decision on the rescue capability 

with the current and forecast weather. There is concern that this may pressure the captain 

towards an optimistic rather than a realistic and sound decision. 
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If this scheme were used, the FRDC would not be more than ca 15 NM from the ERV at any 

time. The MOB boat would be closer to the ERV due to it travelling somewhat slower than 

the FRDC. The crew of the FRDC and MOB boat would need additional competence in 

navigational skills and seamanship, as the craft would be operating to a certain degree 

independently of each other and the ERV. 

Fuel capacity will need to be carefully considered. The ERV uses about one third of the fuel 

when cruising at 12 knots compared to 20 knots, i.e. the ERV fuel consumption is 

approximately three times greater when operating at 20 knots. The FRDC (MS DC12) on Stril 

Merkur [104] has a top speed of 43 knots and a range of 150 NM with 2 persons onboard 

[105]. The range of the MOB boat (GTC 900 2 VD) is not given [105]. 

In an emergency situation it is possible to use the ERV as a command centre to control the 

resources involved in the operation. This would also be possible in the proposed scheme as 

long as the ERV has radar and radio contact with the FRDC and the MOB boat. This would 

need to be considered when equipping the craft and the ERV for this type of operation. 

It is not generally considered to be a desirable solution to deploy a MOB boat for an operation 

at 35 to 50 NM from  its  “mother”  vessel. The MOB boat is open and provides no protection 

for the crew against weather. If a rescue scheme of this type is to be used, it would be 

preferable to consider having a purpose built ERV equipped with two purpose built FRDCs. 

Experience from the design and operation of BP’s Jigsaw project may be beneficial to the 

design of a scheme similar to this suggestion. The size and type of FRDC could possibly be 

somewhere between the daughter craft used today and the BP Jigsaw autonomous rescue and 

recovery craft (ARRC) [108]. 

Advantages with 2 FRDCs: 

 Travel together providing a degree of safety and back up for each other, 

 FRDCs have a larger capacity for passengers, rescued persons, than MOB boats, 

 Each FRDC is designed to rescue 21 persons so there is no capacity limit if one craft 

picks up more than the other. MOB boats are limited to 7 to 10 persons. 

One of the persons participating in the discussion has worked in arctic waters and has 

experience with icing (ice accretion). He confirmed that icing conditions are experienced in 

the Barents Sea and that operation of the vessel, i.e. speed relative to wind and waves, is 
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critical to the rate of icing. SMSAS new builds for deployment in the Barents Sea are 

equipped with means of protection against icing. 

If considering a semisubmersible platform or rig (semi-sub)  instead  of  the  ERV  in  the  “mid-

position”,   the   costs  would be higher than an ERV based solution. Rig rates compared to 

standby vessel rates are in the region of 10 to 15 times higher at the present time (2Q 2012). 

The semi-sub may need a SAR helicopter stationed onboard or a similar scheme of FRDCs 

that could operate independently over the entire range of the rescue area and be able to return 

to the semi-sub when the persons have been rescued from the sea.  

Post meeting notes and comments 
One FRDC has the capacity to rescue 21 as it is certified to carry 24 persons. However, using 

the time estimated to find and rescue each person from the sea, it would not be possible to 

rescue all 21 persons within 120 minutes at a range of 50 NM. It would be necessary with two 

rescue boats to achieve the performance standard. 

A semi-sub would be able to start sailing towards the scene of the accident, however the 

transit speed is considerably lower than for an ERV. There may be issues related to DP or 

anchored operations and time required to trim the semi-sub from operation draft to transit 

draft before it can sail. It takes 3 to 4 hours to de-ballast a semi-sub from operation to transit 

draught [J04]. 

Ice class for the ERV will need to be considered in certain northern and eastern parts. This 

scheme is not necessarily practical if there is ice in the sea, as large distances require high 

cruising speeds that are not compatible with ice conditions. 

Preliminary conclusions 
The MOB boat is probably not suited to a long-range rescue operation and should not be 

considered as part of the scheme. 

If the performance criteria of 120 minutes limit time for rescue of all persons is to be 

achieved, two FRDCs are required for the range of 35 to 50 NM. The advantages of using two 

FRDCs should be considered if this scheme is to be employed. 

Existing vessels may be used for shorter stretches but a new or modified vessel would be 

needed for a 260 NM flight path. 
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There may be advantages using a larger rescue boat similar to the BP Jigsaw ARRC and this 

option should be considered. 

Sea ice conditions may defeat this scheme entirely as it could be unsafe operating vessels or 

craft at high speed in ice infested waters.  

6.10 Trial of immersion suit 
During a course, “Enjoy the Cold”, arranged by NTNU at Ny-Ålesund on Svalbard in March 

2012, it was possible for some of the participants to experience the use of the HellyHansen 

SeaAir immersion suit. This suit has been specially developed for the petroleum industry in 

Norway. The suit is normally used when travelling by helicopter between shore and an 

offshore facility. The suit was originally designed for conditions in the Norwegian Sea and 

the North Sea and was tested according to OLF guideline no. 094 and ISO 15027-3. The 

persons were equipped with temperature logging sensors and spent approximately 90 minutes 

in the sea. The sea temperature was 0,6C and the air temperature was -4C. There was no 

wind or waves during the trial. Temperature was monitored on the skin surface of the neck, 

armpit, upper arm, wrist, and chest and inside thigh. The results are shown in figures 49 & 50.  

 
Figure 49, Temperature log of person A in an immersion suit in the sea at Svalbard 

Person A, a female, wore an Aclima woolnet shirt and long pants, a thin jersey of synthetic 

material and a pair of woollen socks. The person entered the sea at ca 1300 hours and went on 

land at ca 1430 hours. The log for person A is shown in figure 49. 
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Figure 50, Temperature log of person B in an immersion suit in the sea at Svalbard 

Person B, a male, wore an Aclima woolnet shirt and long pants, cotton briefs and short cotton 

socks. Person B chose to wear only one layer of clothing. The person entered the sea at ca 

1440 hours and went on land at ca 1625 hours. The log for person B is shown in figure 50. 

Table 9, Comparison of temperature changes experienced by test persons 
 Person A          

female 
Person B             

male 
Requirement, OLF 
094 & ISO 15027 

Armpit/upper arm 36°C to 33°C, -3°C 32°C to 28°C, -4°C  
Thigh 29°C to 24°C, -5°C 31°C to 22°C, -9°C  
Wrist 34°C to 22°C, -8°C 30°C to 15°C, -15°C Min. allowed 15°C 
Neck 33°C to 29°C, -4°C  Min. allowed 25°C 
Chest  31°C to 28°C, -3°C  

The temperatures for the trial persons are compared in table 9 and show the approximate 

initial temperature, lowest measured temperature and the temperature drop. Person B may 

experience problems with the use of fingers. Person B did not experience problems with 

dexterity. Person B experienced somewhat lower temperatures than person A and this can 

probably be assigned to the lack of an intermediate layer of clothing. Person A has maintained 

a higher temperature and is cooled less than person B even though there has been little 

movement and use of muscles to generate heat. Person B was less well clothed and 

experienced a general feeling of cold already after 30 minutes. The relatively large drop in 

temperature  of  person  B’s  wrist  may   indicate   that   the  body  was   reducing  circulation   to   the  

limbs in order to maintain core temperature. Person A appears to have had a slower rate of 

temperature decrease, at least initially, compared to person B. There also appears to be 

smaller fluctuations in the temperature of person A compared to person B. This may be 

assigned to the fact that person A moved very little while person B moved large muscle 
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groups regularly to generate heat. No critical temperatures were reached during the trial 

although one could normally expect problems with use of fingers when the skin temperature 

is as low as 15°C. 

The persons were questioned on their experience during the trial. Their comments are 

summarised in table 10. 

Table 10, Summary of experience during the trial of immersion suits 
 Person A Person B 
Comfort 
Are there any areas that are 
more uncomfortable (cold) 
than others? 

The gloves and feet of the suit 
leaked. The person lay still as 
movement increased water 
flow through leaks. 
Experienced cold on hands, 
forearms, feet and crotch. 

Back and legs felt colder than 
the rest of the body. Primary 
discomfort was related to 
general feeling of coldness. 

 
 

Movement in suit 
How easy is it to move the 
hands, arms and legs? 

Too large mittens and very 
cold hands reduce ability to 
move. Suit is stiff with many 
gadgets. Movement is 
relatively limited. 
 

Sufficient - not good - but 
enough to do all changes of 
position in the sea. 
 

Movement to generate heat 
How much or how often did 
you move to generate heat? 

Minimal movement in order 
to avoid water flow in 
leaking areas. 
 

Approximately every 10 
minutes, powerful 
movements of legs (primary) 
and arms because the cold 
feeling was too strong. About 
2 minutes of activity worked 
well enough.  

Exhaustion 
Did being in the sea tire 
you? If so, when did you start 
to notice it? 

No experience of exhaustion 
but almost fell asleep. 
 

Absolutely no experience of 
exhaustion. 
 
 

How was the experience of 
lying in the water for 90 
minutes under the prevailing 
circumstances? 

Much better than feared or 
expected. 
 

Cold after only 30 minutes, 
but fully able to take care of 
own safety and to help with 
the safety of others even after 
90 min.  

Other comments 
Is there anything else you 
would like to tell about the 
experience? 

It would probably be much 
more tiring in rough seas. 

Intentionally minimal 
clothing. Unrealistic clothing 
that left little insulation. 
Under real conditions better 
insulation would have been 
achieved even with everyday 
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clothing.  
 
In a real situation contact 
with others would have 
meant more. The feeling of 
lying alone would require 
more mental effort to do the 
right things. 
 
It is important that those who 
receive safety training should 
be informed that it is OK to 
move from time to time. The 
feeling of cold would have 
been much worse if muscles 
are not used to generate heat. 
 
Unrealistically benign 
conditions compared to 
marine climate that may be 
experienced during rig or 
helicopter evacuation. 

Clothing 
 

 

Inner layer: Aclima mesh 
underwear pants (long legs), 
Aclima mesh underwear shirt 
(long arm), brief 
Intermediate layer: Thin 
jersey of synthetic material 
Outer layer: Immersion suit 
Hands/feet: One pair of 
woollen socks 

Inner layer: Aclima mesh 
underwear pants (long legs), 
Aclima mesh underwear shirt 
(long arm), cotton brief 
(short) 
Intermediate layer: None 
Outer layer: Immersion suit 
Hands/feet: Cotton socks 
(short) 

Even though this trial was conducted in benign conditions a number of observations are 

aligned with experience from professionally performed tests under controlled conditions in 

cold climate chambers with wind and waves. The important observations are: 

 An intermediate layer of clothing will normally enhance heat conservation, 

 Intermittent movement of large muscle groups in order to generate heat may 

compensate for cooling of the body, 

 The suit should be the correct size so as not to hinder movement, 

 The suit should be the correct size in order to avoid leaks at sealing points, 
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 Both persons have not experienced  any  serious  loss  of  dexterity  or  the  ability  to  “stay 

in  control”  of  their  situation, 

 Both persons have en expectation that their situation would probably be more 

challenging under more realistic conditions at sea. 

There is a paradox in the comments received from the test persons. Normally it could be 

anticipated that a female would feel the cold sooner than a male. The difference in the 

clothing worn by the persons may explain the deviation from what could be expected, 

however the difference in clothing is small. Normally males are more tolerant to cold than 

females. Also males loose heat more slowly than females because the ratio of body surface 

area to body volume is smaller in males than in females, i.e. females have a greater surface 

area and loose heat quicker than males. 

Another possibility is that as the male exercised large muscle groups in the water to generate 

heat, warm blood may have started flowing to cooled limbs and effectively increased the 

cooling process in spite of the fact that the person felt as though it was beneficial.  

The BMI of the persons was not examined or recorded. It is therefore not possible to say if 

subcutaneous fat , section 5.12, has had any influence on the observed results in this case.  

The results of this trial illustrate the variances that can be found between individuals. In total 

the results are within the expected outcome window and confirm sound practice with regard 

to use of immersion suits. A conclusion that can be drawn from the observations is that it is 

wise to wear sufficient layered clothing under the immersion suit and that some movement 

will improve comfort. 

6.11 Medical doctor onboard facilities 
One recovery measure to reduce the probability of a fatality offshore in a situation where it is 

not possible to perform a medevac would be to have a medical doctor permanently employed 

on facilities working in the Barents Sea. The Barents 2020 project and others have raised this 

issue. Such a measure needs to be considered very carefully in a broader perspective 

including the consequences for society. An offshore doctor would require 3 persons per 

facility to fill an offshore rota of 2 weeks on duty and 4 weeks free. This would provide 24/7 

doctor availability for: 

 typically 80 to 140 persons on exploration facilities including a standby vessel, 

 typically 50 to 300 persons on a permanently installed production facility including a 

standby vessel. 
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It has correctly been indicated that, “Even with a doctor on the installation there are 

limitations to what can be resolved   locally” [75].  Taking into consideration the scarcity of 

medical resources in the county of Finnmark, it may be argued that for the society it would be 

better use of a scarce medical resource to increase the availability of doctors and medical 

persons onshore rather than offshore. On the other hand, a doctor on a facility in the Barents 

Sea would be a resource in the vicinity for other seafarers in need of medical assistance. This 

would also improve the resource situation for the JRCC in Bodø when dealing with situations 

in the Barents Sea. No conclusion is drawn at this stage, as the issue deserves to be the subject 

of an independent study. 

6.12 Operational planning 
In a report dealing with constraints on evacuation means issued by the NPD and DNV in 

1998, it was argued that the operational window for the evacuation means should be known 

and that activities that require evacuation should be terminated when the “window”   is  

exceeded [40 p 28]. As argued in this thesis lifeboats and rescue helicopters are considered as 

barriers to eliminate or prevent the loss of life in accident situations. The Management 

Regulation § 5 concerning barriers require that the responsible party is aware of the 

limitations of barriers and that compensating measures are put in place when a barrier is 

missing or impaired [10]. In 2010 the PSA published explanatory information regarding 

requirements to availability of evacuation means and the type of analysis that is required to 

document evacuation capability [83]. A holistic approach is recommended to operational 

limits imposed by weather and sea conditions on the ability to evacuate or rescue persons. 

This has consequences when planning flights to offshore locations and the entire operation of 

an offshore facility. Flights should only be planned if passengers can have a reasonable 

expectation of being rescued alive. Similarly, activities onboard a facility should be 

considered in conjunction with the weather forecast, the inherent risk of the activity and the 

probability of performing a successful evacuation and subsequent rescue operation. This will 

require the development of departure criteria for helicopter transport and guidance on 

acceptable weather criteria for operations and activities on facilities taking into account the 

specific threats at the location. 

6.13 Selection of personnel for work in the Barents Sea 
The issue of selection criteria for personnel who are to work in the petroleum industry in the 

Barents Sea is very delicate. There are health issues that are aggravated by the cold and the 
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risk of severe illness increases in low air temperatures. The access to medical resources both 

on the facility and onshore in northern Norway is limited. In addition there are long flight 

times   to   the   most   remote   locations   exceeding   the   industry’s agreed performance criteria. 

Reduction of the need for medical assistance or evacuation due to cold related illness by 

improving health screening is preferred rather than not being able to assist personnel in an 

acute health situation. It has also been shown that good physical and mental health is critical 

for survival in accidents in cold air and water. The health criteria for personnel working on 

facilities in the Barents Sea will need to be reviewed. This should be done in close 

cooperation with the work force as required by the Frame Regulation § 13 regarding 

employee participation in issues related to health, safety and the environment [9]. 

6.14 Critical issues related to helicopter transport, evacuation and rescue 
As previously discussed, departure criteria for safe helicopter transport have been 

recommended after investigation into helicopter incidents with fatalities. Issues that require 

evaluation are listed in table 11 below. Where possible, criteria have been proposed based on 

information gathered on factors limiting safe helicopter and rescue operations. These would 

need to be evaluated by aviation and rescue experts and included in a guideline. 

Table 11, Proposed departure criteria for helicopter transport over sea 
Issue Criteria Route Local Comment 
Weather forecast Reliable weather 

forecast available  
X X Weather forecast for route 

and for terminal (TAF) ie 
airport and facility 
helicopter deck  

Weather forecast No forecast of polar 
low conditions 

X X Polar low outbreak may 
defeat rescue operation  

Lightning No forecast of 
lightning  

X X Flight allowed if 5 NM 
separation from CB can be 
maintained [22] 

Alternate airport Available   For long routes an offshore 
alternate may have to be 
accepted. 

Sea state ≤  SS6 X X SS6 is the current certified 
limit for floatation system 

Significant wave ≤ 5m (SS6) X X Hs of ca 5m occurs at SS6 
Wind on helideck ≤ 60 knots  X OLF guideline limit 
Air temperature, at 
sea level 

≥ test temperature, 
certification of 
immersion suit  

X X Air temperature must not 
reduce survival time or lead 
to ice accretion on 
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(≥  -2°C, ice accretion) immersion suit 
Sea temperature ≥ test temperature, 

certification of 
immersion suit  

X X Sea temperature must not 
impair survival time in 
immersion suit 

Visibility Minimum visibility 
requirements to be 
met, e.g. OGP 369 § 3 
[24] 

X X Visibility must allow safe 
landing/take off conditions 
and location of survivors 

Darkness Functioning 
navigational aids, 
radar and floodlights  

X X This applies to systems on 
the aircraft, the facility and 
the helicopter deck 

Rescue provisions Reasonable 
expectation of rescue 
in the event of a forced 
landing. 

X X OGP 369 § 3.5.2 [24] 

SAR helicopter Available X (X) Rescue resource must be 
available for duration of 
flight. Sea King unavailable 
in icing conditions 

ERV/FRDC/MOB Available (X) X Rescue resource must be 
available and able to 
operate 

Maximum number 
of passengers 

Calculated based on 
rescue capacity within 
120 minutes for 
weather conditions at 
time of flight 

X X Pilots to be included in 
calculation, i.e. no. of 
passengers + 2 pilots. 
Average pick-up time of 3 
minutes to be adjusted for 
actual conditions 

Icing conditions Within design limits of 
anti-icing equipment 
installed on helicopter 

X X Helicopter without anti-
icing cannot be used in 
icing conditions 

Helicopter deck 
movements 

Pitch, roll & heave 
limits  

 X OGP 369 §4 [24] 

Many of these issues are addressed in OLF guideline no. 066 & 095 [22 & 23] and OGP 

report no. 369 Aviation weather guidelines [24]. The requirements should be evaluated for 

helicopter operations in the Barents Sea and a separate document developed. 

When planning operations onboard a facility, there should be raised awareness to the 

conditions that may have a negative effect on the ability to evacuate and rescue persons. 

Issues that may be limiting factors for the success of evacuation and rescue are listed table in 

12 on the following page. 
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Table 12, Issues threatening success of evacuation and rescue 
Issue Threatens or impairs Comments 
Lightning Use of helicopters May cause damage to 

helicopter, both mechanical 
and electronic components 

Ice accretion Stability of vessels May lead to dangerous 
situations for lifeboat, ERV, 
FRDC and MOB boats 

Low air temperature Survivability of persons Very low temperatures may 
reduce the survivability of 
persons, especially in sea 

Polar lows (PL) Visibility May be difficult to locate 
persons 

Use of immersion suit PL may present an increased 
risk of drowning 

Significant wave height ≥ 4m Transfer of persons to ERV 
without stern slipway. 

May damage lifeboat and 
injure persons 

Hoisting of persons from 
lifeboats 

May injure persons if 
attempting to hoist from 
lifeboat 

Darkness Safe landing on helicopter 
deck 

There are risks associated 
with landing on helicopter 
decks in the dark, especially 
on facilities that are affected 
by the motion of the sea 

Location of persons in the 
sea 

May be difficult to locate 
persons in the sea in the dark 
if they are not equipped with 
a PLB, strobe light or 
reflective material  

Limiting issues that responsible parties in industry and the public are, or should be, 
aware of 

 It is most likely not possible to rescue persons from a lifeboat in hurricane conditions, 

Beaufort scale 12 and beyond. In these conditions it may be necessary to ride out the 

storm and remain in the lifeboats. The weather must improve before rescue can be 

attempted or accomplished. 

 It may not be possible to retrieve a lifeboat from the sea onto the slipway of an ERV if 

wave heights are above ca 12 meters. This corresponds to a violent storm, Beaufort 

force 11 and beyond. In these conditions it may be necessary to ride out the storm and 

remain in the lifeboats. The weather must improve before rescue can be attempted or 

accomplished. 
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 Helicopters, if able to start rotor, can operate in almost any weather conditions. 

However, there is a risk of injuring the rescue man and survivor if attempting to land 

the rescue man on a lifeboat for hoisting a survivor. In these conditions it may be 

necessary for persons to jump into the sea and swim away from the lifeboat for pick 

up from the sea. This is not an ideal situation in very cold conditions and carries 

inherent risks. As observed during the Estonia accident, it could be dangerous for the 

rescue man to come close to a lifeboat already in 3 – 4 meter waves, corresponding to 

Beaufort scale 6 -7, strong breeze to near gale. 

 Due to the current limited access to helicopter resources in the Barents Sea, helicopter 

evacuation of the entire crew on a facility will be time consuming. Resources may 

well prove insufficient depending on the situation leading to the evacuation. A 

precautionary evacuation of a facility in the Barents Sea is likely to involve the use of 

lifeboats. 

 It will not be possible to transport personnel to hospital within 3 hours if the facility is 

more than 150 to 175 NM from the hospital and there is no helicopter based on or near 

the facility. 

 Helicopter transport is currently performed in conditions that are beyond the floatation 

system certification, i.e. it is likely that the helicopter will capsize shortly after 

ditching in the sea when sea state is above 6, corresponding approximately to Hs = 5 m 

 Tests specification ISO 15027-3 [16] for certification for immersions suits specifies an 

air temperature that is higher than can be expected in the Barents Sea. 

 Rescue and medical resources are limited in northern Norway, the Barents Sea and the 

area of Svalbard. An accident involving many persons may stretch capabilities of the 

rescue and medical services to the limit of what is possible. 

6.15 Risk management 
Sound processes to identify and manage risk are required when operating in the Barents Sea. 

A continuous alertness to the risks and active processes to identify risk reducing and 

compensating measures in order to reduce risk to a level as low as reasonably practicable 

(ALARP) in all circumstances is the very basis of Norwegian regulation [10]. It must not be 

forgotten that the minimum requirements in the regulations shall be met and then the ALARP 

requirement shall be applied additionally.  In the petroleum industry it is the responsible 

operator that must define the risk acceptance criteria for the activity, cf. the Management 

Regulation § 9, [10]. The regulations have limited definition of specific risk acceptance 
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criteria. This can make it complicated for all involved to relate to the results of a risk analysis 

and to deal with probabilities expressed numerically for very low frequency events. 

Individuals may base their assessment of risk on factors that are defined within the concept of 

perceived risk and are more concerned about the consequences of worst-case outcome than 

the probability of the event. In this context, we can find an expectation that there should be 

emergency preparedness for worst-case events, but it is accepted to a certain degree that all 

situations may not be possible to deal with. 

When looking at presentations held within industry conferences, there seems to be a large 

degree of agreement on the challenges and risks to operations in the Barents Sea. Media 

coverage of risks appears to focus mainly on environmental issues. Problems related to the 

safety of personnel working in the Barents Sea and the lack of emergency preparedness 

resources may “come   as   a   surprise” to the public if there is an incident that puts rescue 

services to a severe test. 

The intention of addressing the issue of risk communication has been to increase openness 

and awareness of the challenges to evacuation and rescue in the Barents Sea. Sound 

management and communication of risk can save lives, improve overall performance and 

safety levels, enhance experience transfer and avoid a media crisis or public outrage in the 

case of an incident. 
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7 CONCLUSIONS 
The Barents Sea is currently an undeveloped petroleum province with little infrastructure and 

special weather conditions that need to be considered. The situation will improve as fields are 

discovered and developed introducing resources and infrastructure. Performance requirements 

defined for barriers in other areas of the Norwegian continental shelf may prove impossible to 

uphold in the Barents Sea, at least initially. The most obvious example here is the requirement 

to medevac a person to hospital within three hours [21]. Similarly, operational limitations 

imposed on helicopter transport may prove difficult to comply with. The most obvious 

examples in this case are the limitation on scheduled flights at night (in the dark) and that an 

offshore alternate landing site is not permitted when planning required fuel for a flight [22]. 

7.1 Evacuation 
There are issues related to the evacuation of a facility that require special attention. This is 

particularly related to icing on lifeboats and the scarce helicopter resources currently available 

for evacuation of petroleum facilities in the Barents Sea. It is therefore not unlikely that we 

may see a precautionary evacuation of a facility involving the use of lifeboats, where in a 

similar situation further south on the Norwegian continental shelf, this may have been 

possible to perform using helicopters. A situation with personnel in lifeboats in the sea may 

require a rapid recovery of the persons and transfer to a safe place like an emergency response 

vessel. 

7.2 Rescue 
Resources for rescue operations in the Barents Sea are currently few, far apart and can only 

provide a limited service compared to the North Sea. Rescue of persons from the sea in the 

case of a helicopter incident will stretch the capability of current resources especially as 

exploration once again will take place at locations further from the coast than has been normal 

in the most recent years. It is important to develop robust rescue solutions taking into account 

the specific challenges of the Barents Sea. When there is activity towards the north east, the 

deployment of a SAR helicopter at an accessible airport like Berlevåg or Vardø, should be 

considered. 

7.3 Medical resources 
Medical resources in the county of Finnmark are limited. In the event of an incident involving 

serious injury of many persons, there may be serious challenges to provide required medical 
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treatment. In such a situation it can be expected that transport of injured persons to hospitals 

in Tromsø and elsewhere in Norway will be necessary.  

7.4 Regulatory requirements 
The currents regulations are functional and risk based allowing for tailored solutions. 

Furthermore, the application of the requirements to barriers as defined in the Management 

Regulation § 5 and applied in this thesis, is a sufficiently specific requirement that shall be 

met by the responsible operators in the Barents Sea. The regulatory regime is therefore 

considered sufficient to safeguard evacuation and rescue in the Barents Sea. The guidelines to 

the regulations need to be complemented with references to standards like ISO-19906. The 

work done within the Barents 2020 project may provide a useful guidance for the Barents 

Sea. This work has been handed over to International Standards Organisation Technical 

Committee 67 / Sub Committee 8, Arctic Operations (ISO TC67/SC 8) for incorporation into 

ISO 19906. The impact of ice accretion and possibly sea ice or icebergs on activities in the 

Norwegian sector of the Barents Sea will need special considerations. The functional 

requirements in the regulations regarding evacuation are applicable for facilities where sea ice 

can occur, although, at the present time, they do not refer to any standard or technical 

solution. ISO 19906 is relevant in this respect. 

7.5 Risk communication and risk perception 
The public find it hard to relate to quantitative risk acceptance criteria. They base their 

assessment of risk on factors that are defined within the concept of perceived risk. They are 

often preoccupied with the worst-case scenario rather than the probability of occurrence. An 

expectation that there should be emergency response measures for the worst-case incident 

may be found among the public. It may be fair to expect public outrage if an accident should 

occur and that weaknesses identified by stakeholders in the petroleum industry have not been 

sufficiently taken care of. 

7.6 Final conclusion 
In response to the opening questions raised in this thesis: 

What critical factors influence emergency preparedness, rescue operations and survival in the 

Barents Sea? Critical factors influencing emergency preparedness in the area are issues 

related to survival of persons in the sea, appropriate immersion suits, lifeboats and other 
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vessels that can operate in conditions with ice accretion and solutions to rescue capability 

over long stretches of open sea. 

Can these critical factors be managed effectively? The critical issues can be managed but they 

will require attention and the provision of suitable resources in the area. 

How are limitations in emergency preparedness response communicated? There is an 

awareness of the issues within the industry as seen in presentations at conferences. Apart from 

issues related to pollution and oil spill response, there appears to be little communication to 

the general public regarding risks to persons. There is room for improvement in light of the 

government’s  ambition regarding transparency about the challenges.  

With  regard  to  the  hypothesis  “All  year  petroleum  activity  is  not  possible  everywhere in the 

Barents Sea with regard to emergency preparedness unless sufficient attention is given to 

critical factors influencing   evacuation   and   rescue”   it  may   be   concluded   that   the   hypothesis  

stands and that there are issues that must be resolved in order to facilitate all year activity. 

7.7 Recommendations 
The following recommendations are put forward for consideration: 

1. Departure criteria for helicopter flights in the Barents Sea should be established based 

on limiting parameters like; sea state, helicopter stability with floatation deployed, 

wind direction and speed, air and sea temp, visibility including fog, snow and degree 

of darkness, lightning forecast, polar low forecast, availability and limitations of air 

and sea rescue resources. 

2. Operational limitations should be developed for activities on a facility in the Barents 

Sea taking into account the inherent risk and the ability to evacuate and rescue persons 

in the forecast weather conditions. 

3. The effect of ice accretion on stability and performance needs to be studied for each 

individual vessel, craft or lifeboat deployed in activities in the Barents Sea. 

4. Although the Norwegian area currently opened for exploration is considered an ice-

free area, any development will need to consider actions of sea ice and icebergs for 

design loads and operational strategies for structures, vessels and evacuation means. 

5. Emergency response vessels with a stern slipway for recovery of MOB boats, fast 

recovery daughter craft (FRDC) and lifeboats should become mandatory for support in 
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the Barents Sea. This is recommended so as to facilitate a rapid recovery and rescue of 

personnel evacuated in lifeboats in a broader range of sea states. 

6. Health and fitness requirements for personnel working on facilities in cold, harsh and 

remote locations should be evaluated. The aim is to reduce the need for medical 

assistance where a health situation could have been foreseen and to ensure that 

individuals are as fit as reasonably possible in order to increase the probability of 

survival if involved in an evacuation or helicopter incident under harsh conditions.  

7. The facility to be installed on the Skrugard field in block 7220 in the Barents Sea 

should be built with a helicopter hangar so as not to exclude the stationing of a SAR 

helicopter either from the start of the operation or at a later date. This recommendation 

is made based on the strategic position of the facility and the good experience, so far, 

of placing SAR helicopters offshore on installations equipped with a hangar.  

8. There should be requirements to the use of a minimum standard of clothing under 

immersion suits when travelling in the Barents Sea. Special care should be taken to 

ensure that helicopter passengers wear correctly sized and watertight immersion suits. 

9. The possibility of building one or more dedicated rescue vessels for the Barents Sea 

should be evaluated. This vessel may need to be a joint venture between the 

authorities/navy and the petroleum industry.  

10. The need for refuelling facilities en route to remote locations, i.e. more than 150-170 

NM from an onshore airport should be evaluated. 

11. One should evaluate the content of basic safety training courses and consider 

enhancing the syllabus with issues critical for cold, harsh and remote locations.  

12. Consider providing a voluntary course where  

a. Personnel are exposed to cold water, experience the effects and become 

familiar with their own reaction 

b. Personnel are exposed to simulated conditions that may be experienced in an 

evacuation involving wind, precipitation, varying light and visibility and 

potentially claustrophobic situations. 

Based on experience and participant feedback, consider developing a compulsory 

version of the training. 
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A.1 Abbreviations 
ALARP As Low As Reasonable Practicable 

ARRC Autonomous Rescue and Recovery Craft 

AWSAR All Weather Search and Rescue 

BHS Norwegian Board of Health Supervision 

BJF Båtsfjord airport 

BVG Berlevåg airport 

CPA Norwegian Climate and Pollution Agency 

CPR cardiopulmonary resuscitation 

ENBJ Bjørnøya airport 

FLIR Forward looking infrared camera/radar 

HFT Hammerfest airport 

HUET Helicopter Underwater Escape Training 

DNMI Norwegian Meteorological Institute 

DSHA Defined Situation of Hazard and Accident 

ERV Emergency Response Vessel 

FRC Fast Recovery Craft 

FRDC Fast Recovery Daughter Craft 

g Gravitational acceleration, g = 9,81 m/s2 

KKN Kirkenes airport 

km kilometer 

kts knots. Nautical miles per hour 

LKL Lakselv airport (Banak) 

m meter 

M-ADS Modified Automatic Dependent Surveillance  

MEH Mehamn airport 

MOB man overboard 
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NM nautical mile 

NTNU Norwegian University of Science and Technology 

OED Norwegian Ministry of Oil and Energy 

OGP International Association of Oil & Gas Producers 

PL Polar low 

PLB Personal locator beacon 

PSA Norwegian Petroleum Safety Authority 

RS  Raynaud’s  syndrome 

SAR Search and Rescue 

SMSAS Simon Møkster Shipping AS 

VAW Vardø airport 
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A.2 Beaufort scale 
Table A.2, Beaufort Scale [89] 

Beau-
fort 

wind 
scale 

Mean Wind 
Speed 

Limits of wind 
speed Wind 

descript-
ive terms 

Hs* 

m 

Max 
wave* 

m 

Sea 

state 

Sea 
descriptive 

terms Knot
s m/s Knot

s m/s 

0 0 0 <1 0–0.2 Calm - - 0 Calm (glassy) 

1 2 0.8 1–3 0.3–1.5 Light air 0.1 0.1 1 Calm 
(rippled) 

2 5 2.4 4–6 1.6–3.3 Light 
breeze 

0.2 0.3 2 Smooth 
(wavelets) 

3 9 4.3 7–10 3.4–5.4 Gentle 
breeze 0.6 1.0 3 Slight 

4 13 6.7 11–
16 5.5–7.9 Moderate 

breeze 1.0 1.5 3–4 
Slight–

Moderate 

5 19 9.3 17–
21 

8.0–
10.7 

Fresh 
breeze 2.0 2.5 4 Moderate 

6 24 12.
3 

22–
27 

10.8–
13.8 

Strong 
breeze 3.0 4.0 5 Rough 

7 30 15.
5 

28–
33 

13.9–
17.1 Near gale 4.0 5.5 5–6 Rough–Very 

rough 

8 37 18.
9 

34–
40 

17.2–
20.7 Gale 5.5 7.5 6–7 Very rough–

High 

9 44 22.
6 

41–
47 

20.8–
24.4 

Severe 
gale 7.0 10.0 7 High 

10 52 26.
4 

48–
55 

24.5–
28.4 Storm 9.0 12.5 8 Very High 

11 60 30.
5 

56–
63 

28.5–
32.6 

Violent 
storm 

11.5 16.0 8 Very High 

12 - - 64+ 32.7+ Hurricane 14+ - 9 Phenomenal 

 These values refer to well-developed wind waves of the open sea. The lag effect between 
the wind getting up and the sea increasing should be borne in mind. Source: 
http://www.metoffice.gov.uk/weather/marine/guide/beaufortscale.html , [89] 

 

http://www.metoffice.gov.uk/weather/marine/guide/beaufortscale.html
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A.3 Polar lows in Barents Sea 2000 to 2010 
Table A.3, List of polar lows in Barents Sea from 2000 to 2010 [52] 

Date Time Latitude Longitude Remark 
(As given in 
report by DNMI) 

Minimum  
air 

pressure, 
hPA 

Maximum 
wind 

speed, 
knots 

12.12.99 1340 72°N 18°E  989 45 
22.01.00 0250 72,5°N 29°E Old Erik 990 42 
24.03.00 1230 72°N 21°E Most beautiful 997 35 - 40 
01.01.01 1500 75°N 22°E    
01.11.01 0200 71°N 19°E The Torsvåg case, 

cirrus outflow 
992 50 

09.11.01 1700 74°N 25°E    
31.12.01 0400 73°N 38°E Dual   
12.01.02 1200 73°N 21°E  979 35 
22.01.02 1100 75°N 28°E Dual system 985 50 
23.01.02 1200 71°N 17°E Multiple 978 35 
19.02.02 1300 74°N 34°E Most beautiful 968 55 
22.02.02 0000 74°N 33°E Dual   
20.05.02 1436 73,3°N 15,5°E Dual system 1010 35 
31.12.02 1100 73°N 38°E Multiple   
17.01.03 0000 73,5°N 25,5°E Slow moving 985 35 
11.03.03 0000 72°N 16,5°E  979 45 
24.10.03 0600 71,5°N 18°E Reversed shear 990 45 
08.12.03 1320 71°N 31°E Reversed, 

secondary 
985 44 

17.12.03 1300 72°N 38°E  988 45 
27.12.03 1200 73°N 18°E   38 
07.03.05 0700 72°N 18°E The Brummer 

case 
 35 

02.04.05 0900 75°N 24,5°E Secondary, strong 
reversed 

994 70 

26.04.05 1700 74°N 25°E Cirrus shield   
23.11.05 1500 74°N 18°E Double-system, 

comma in SW 
 44 

29.10.06 1200 72°N 16°E Primary, good 
models 

992 38 – 54 

22.12.06 12-18 71,5°N 17°E Secondary, 
baroclinic, poor 
mod. 

979 48 – 61 

26.12.06 03-18 72,5°N 18-22°E Secondary, 
inst.Occ., reversed 

977 49 – 63 

13.02.07 0600 71,5°N 23°E Small PL 1004 40 
11.12.07 1930 71°N 31°E   35 
29.02.08 1030 74°N 24°E Dual 950 40 
18.03.08 1500 73,5°N 28,5°E Dual, reversed  35 
17.11.08 0700 75°N 25°E  990 35 
30.12.08 1200 72°N 34°E Marginal 995 40 
07.01.09 0300 72°N 28°E Multiple  50 
25.02.09 2100 71,5°N 22°E    
27.02.09 1800 72,5°N 32,5°E Neutral, 1000 30 
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baroclinic 
02.04.09 0900 73°N 35,5°E Baroclinic, 

reversed 
1008 35 

05.04.09 0700 73°N 25°E Cirrus waves on 
top 

2008 30 

12.03.10 1200 72°N 19°E Multiple 991 35 
14.03.10 1200 73°N 16°E No observations 996  
19.03.10 1200 74,5°N 18°E Dual 994 35 
24.03.10 1800 72°N 18°E Comma, later PL 1012  
27.03.10 0100 72,5°N 19,5°E Baroclinic, 

reversed 
1005 35 

31.05.10 1800 70,5°N 19,5°E One fatality, 
baroclinic, 
neautral 

1008 40 
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A.4 Ice accretion on aircraft, statistics for route Hammerfest to Bjørnøya 
Table A.4 below shows the percentage of time per month that icing can be expected for each 

of the severity classes: no icing, light icing, moderate icing and severe icing. 

Table A.4, Icing statistics for route Bjørnøya – Hammerfest at height 267m (876ft) [53] 
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A.5 Overview of exploration activity 1980 to 2011 
The table A.5 below presents an overview of exploration activity in the Norwegian sector of 

the Barents Sea. The data is collected from the Norwegian Petroleum Directorate fact sheets 

[92] issued after completion of each well. The rigs that have been identified as having drilled 

in the Barents Sea are listed in the table. 

Table A.5, Overview of rig activity in the Norwegian sector of the Barents Sea [92] 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Rig 

1980      30 31 31 30 12   Treasure Seeker 
      16 31 31 30 10   Ross Rig 

1981    15 31 30 31 31 11    Treasure Seeker 
    14 31 30 31 31 10    Ross Rig 

1982    10 31 30 31 31 26    Treasure Scout 
    15 31 30 31 31 30 8   Nordraug 

1983   15 1,5 31 30 31 31 9    Treasure Scout 
    24 31 30 31 21     West Vanguard 
     11 30 31 21 12    Dyvi Delta 
      19 31 11     Treasure Seeker 

1984  10 31 30 31 30 31 31 30 20   Treasure Scout 
   13 30 31 30 31 31 30 27   West Vanguard 
      3 31 31 25    Byford Dolphin 
        11 8    Zapata Ugland 

1985 2 28 31 30 31 30 31 31 28    West Vanguard 
  26 31 30 31 30 31 31 30 29   Treasure Scout 
   18 30 31 21      24 Borgny Dolphin 
          21 13  Zapata Ugland 

1986   18 30 31 30 21      Borgny Dolphin 
   13 30 31 30 31 23     Zapata Ugland 
     6 30 31 12     Ross Isle 

1987     2 30 31 31 30 31 30 31 Ross Rig 
      7 31 31 30 31 24 31 Polar Pioneer 

1988 31 25           Polar Pioneer 
 31 28 31 30 31 30 31 31 30 31 30 31 Ross Rig 

1989 31 28 28   27 31 31 30 31 30 31 Ross Rig 
1990 31 28 31 30 7        Ross Rig 

       11 31 5    Byford Dolphin 
1991 4 23           Polar Pioneer 

        20 30 31 25 31 Arcade Frontier 
1992 13            Arcade Frontier 

       10 31 30 31 11  Polar Pioneer 
          26 30 26 Ross Rig 

1993        22 30 31 30 31 Ross Rig 
1994 31 26           Ross Rig 
1995              
1996              
1997              
1998              
1999              
2000       7 31 30 31 30 31 Transocean Arctic 
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2001 31 28 9          Transocean Arctic 
         18 19   West Alpha 

2002              
2003              
2004              
2005 11 28 31 30 13     7 30 31 Eirik Raude 
2006 26 28 24          Eirik Raude 

        21 30 31 30 31 Polar Pioneer 
2007 31 28 7   16 22    16 10 Polar Pioneer 
2008 24 29 31 30 31 30 31 31 30 31 30 31 Polar Pioneer 
2009 14            Polar Pioneer 
2010          13 30 31 Polar Pioneer 
2011 22 18 31 30 3        Polar Pioneer 

    1 31 30 31 31 25    West Phoenix 
     15 30 9      Transocean Leader 
         12 28 29 25 Aker Barents 
Total 333 381 393 440 553 709 793 813 669 530 418 426  

  

Figure A.5 illustrates the average number of drilling days per months for three periods. The 

average for the periods only takes into account the years with activity. Activity was originally 

carried out during the summer in the period 1980 to 1986. Since then there has been a shift 

towards winter drilling to reduce the consequences to breeding during the spring and summer 

months. 

 
Figure A.5, Average number of rig days per month for the main activity periods 
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A.6 22nd licence round  
The map in figure A.6.1 below shows the interest for blocks, i.e. those that have been 

nominated as potential exploration prospects in the 22nd round. Grey indicates that a licence 

has been awarded in a previous round. Light red indicates that only one company has 

nominated the block while dark red indicates that two or more companies have expressed 

interest. 

 
Figure A.6.1, Map of the nominated blocks in the Norwegian part of the Barents Sea [87] 

 

Continued on next page.  
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The map in figure A.6.2 below shows the blocks that the Oil and Energy Department have 

decided to include in the 22nd round. Grey indicates that a licence has been awarded in a 

previous round. Light red indicates the blocks that are included in the 22nd round. 

 
Figure A.6.2, Map of the blocks in the Norwegian part of the Barents Sea [88] 

The yellow diamonds marked A to E on the map in figure A.6.2, indicate positions that are 

200 NM or more from Hammerfest as shown in table A.4 below. The detailed distances are 

presented in the table. 

Table A.6, Distance between Hammerfest and position marked by yellow diamond 
 A B C D E 
Position 73°N,       

16°E 
73,75°N, 

17°E 
74,25°N, 
23,33°E 

74,25°N, 
25,67°E 

72,75°N,  
32°E 

Distance 200 NM 221 NM 215 NM 217 NM 200 NM 
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A.7 Network – facility evacuation 
An attempt is made to illustrate the interaction between the many elements involved in the 

evacuation of a facility as analysed with bow tie diagrams in section 6.3. The network may be 

difficult to understand but with some explanation, it is a goal that it will enhance appreciation 

of the context and demonstrate the complexity of the situation. This type of network could be 

used to build Bayesian Belief Networks and perform an analysis similar to the work done by 

Norrington et. al. [44]. The network could be further developed and expanded in order to 

analyse critical issues and provide a basis for performing ALARP evaluations and cost benefit 

analysis aiding decisions on investments to improve safety. 

 
Figure A.7.1 Network diagram illustrating evacuation and rescue 

 

Figure A.7.1 illustrates the interaction between elements that can influence successful 

evacuation and rescue. It includes elements that influence the ability to evacuate, the effects 

of weather, the provision of rescue means and issues that an organisation needs to address in 

order to be prepared. The network is an example of a selection of issues and is not intended to 

be an exhaustive description of all issues. 
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The  white   diamond   in   the   centre   of   the   network   shows   the   objective   “Effective evacuation 

and  rescue”.  The  whole  network  may  be  simplified  by  grouping the issues into 4 groups of 

issues that affect the outcome: 

 organisational measures (green) 

 status of the evacuees and the evacuation means (blue) 

 rescue resources (yellow) 

 weather (magenta) 

The status of the evacuees is highly dependent on the functioning of the evacuation means 

and it has therefore been chosen to deal with these issues as one group. 

Organisational measures (green) 

Organisational measures ensure that risk and emergency analysis has been performed and that 

an emergency preparedness plan has been developed. The emergency preparedness plan 

dictates the requirements for rescue resources and the evacuation equipment that must be 

provided for those who may need to evacuate the facility. The organisation will also set the 

requirements for maintenance of the elements in the evacuation system, for example the 

lifeboats, release mechanisms and life rafts. The organisation will also stipulate requirements 

for training of the personnel so that the evacuees possess the necessary competence to use the 

evacuations means that are provided. 

Status of the evacuees (blue) 

The status of the evacuees depends on how they have evacuated from the facility, the weather 

at the time of evacuation and the training that they have received. The evacuees’ use of the 

lifeboats or life rafts depends on issues like the maintenance of the equipment, the functioning 

of the release mechanisms and launching equipment and the competence of the evacuees.  

The weather may have a large impact on the status of the evacuees and may necessitate a 

prolonged stay onboard the lifeboat while waiting for conditions that permit helicopter pick 

up or safe transfer of persons to the ERV. During this time, ice accretion may occur 

threatening stability of the lifeboat and eventually the safety of the occupants. 

Rescue resources (yellow) 

The type of rescue resources available will depend on the provisions made by the organisation 

and the emergency preparedness plans. Normally an ERV and SAR helicopter will be made 
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available. The rescue resources are dependent on an acceptable weather window allowing a 

successful rescue operation. For helicopter rescue of persons in the sea, the rescue man is a 

single critical resource. The rescue man is particularly vulnerable to the influence of the 

weather, especially waves. 

Weather (magenta) 

The weather can play an important role in the outcome of an evacuation and rescue situation. 

The weather is a combination of many factors like air and sea temperature, wind and waves. 

The weather will influence the status of the evacuees. They may become seasick or suffer the 

effects of hypothermia, they may have to ride off a storm and they may experience icing on 

their lifeboat. Ice accretion on the lifeboats or ERV is dependent on the air and sea 

temperature, the wind and the waves. Also the waves may make it difficult for a rescue man 

to hoist persons from the lifeboats. 

Use of networks, event trees and bow tie diagrams 

Due to the complexity of the situations being analysed, it may be beneficial to supplement the 

chosen analysis method with complementing methods to enhance the understanding and 

visualisation of the issues. The selection of the methods is for the organisation and persons 

performing the work to decide. In this thesis it has been found useful to supplement the event 

trees and bow ties with networks. Due to the size of the document, it has been chosen only to 

include one network as an example in the appendix. 
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A.8 Calculations of helicopter ground speed taking into account the effect of 
wind   



Calculations of helicopter ground speed

Calculated values Value Units Value Value Value
Av:angle WS to GS 180 deg 180,000001 170,000001 160,000001

Av:convert deg to radians 3,14159 rad 3,14159 2,96706 2,79253

sin(Aw)=sin(Av)*WS/TAS 0,00000 0,00000 0,06946 0,13681

Aw (arcsin of previous result) 0,00000 rad 0,00000 0,06952 0,13724

Aw:wind corr angle 0,00000 deg 0,00000 3,98293 7,86318

Ac:angle WS to TAS 0,00000 deg 0,00000 6,01707 12,13682

Ac:convert deg to radians 0,00000 rad 0,00000 0,10502 0,21183

GS:ground speed(G) 60,00 knots 60,00 60,37 61,47

Known variables Value Units Value Value Value
Heading A to B (C:course) 0,0000001 deg 0,0000011 0,0000011 0,0000011

TAS:true air speed(V) 100 knots 100 100 100

W:wind speed(WS) 50 knots 50 50 50

Wind direction (Wd) 0 deg 0 10 20

Calculated values Value Units Value Value Value
Av:angle WS to GS 180 deg 180,000001 170,000001 160,000001

Av:convert deg to radians 3,14159 rad 3,14159 2,96706 2,79253

sin(Aw)=sin(Av)*WS/TAS 0,00000 0,00000 0,08682 0,17101

Aw (arcsin of previous result) 0,00000 rad 0,00000 0,08693 0,17185

Aw:wind corr angle 0,00000 deg 0,00000 4,98092 9,84655

Ac:angle WS to TAS 0,00000 deg 0,00000 5,01907 10,15345

Ac:convert deg to radians 0,00000 rad 0,00000 0,08760 0,17721

GS:ground speed(G) 50,00 knots 50,00 50,38 51,54

Known variables Value Units Value Value Value
Heading A to B (C:course) 0,0000001 deg 0,0000011 0,0000011 0,0000011

TAS:true air speed(V) 100 knots 100 100 100

W:wind speed(WS) 60 knots 60 60 60

Wind direction (Wd) 0 deg 0 10 20

Calculated values Value Units Value Value Value
Av:angle WS to GS 180 deg 180,000001 170,000001 160,000001

Av:convert deg to radians 3,14159 rad 3,14159 2,96706 2,79253

sin(Aw)=sin(Av)*WS/TAS 0,00000 0,00000 0,10419 0,20521

Aw (arcsin of previous result) 0,00000 rad 0,00000 0,10438 0,20668

Aw:wind corr angle 0,00000 deg 0,00000 5,98044 11,84191

Ac:angle WS to TAS 0,00000 deg 0,00000 4,01956 8,15808

Ac:convert deg to radians 0,00000 rad 0,00000 0,07015 0,14239

GS:ground speed(G) 40,00 knots 40,00 40,37 41,49
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Calculations of helicopter ground speed

Value Value Value Value Value Value Value
150,000001 140,000001 130,000001 120,000001 110,000001 100,000001 90,0000011

2,61799 2,44346 2,26893 2,09440 1,91986 1,74533 1,57080

0,20000 0,25712 0,30642 0,34641 0,37588 0,39392 0,40000

0,20136 0,26004 0,31143 0,35374 0,38534 0,40490 0,41152

11,53696 14,89895 17,84348 20,26790 22,07853 23,19883 23,57818

18,46304 25,10105 32,15652 39,73210 47,92147 56,80117 66,42182

0,32224 0,43810 0,56124 0,69346 0,83639 0,99137 1,15928

63,34 66,00 69,48 73,81 78,99 84,97 91,65

Value Value Value Value Value Value Value
0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011

100 100 100 100 100 100 100

50 50 50 50 50 50 50

30 40 50 60 70 80 90

Value Value Value Value Value Value Value
150,000001 140,000001 130,000001 120,000001 110,000001 100,000001 90,0000011

2,61799 2,44346 2,26893 2,09440 1,91986 1,74533 1,57080

0,25000 0,32139 0,38302 0,43301 0,46985 0,49240 0,50000

0,25268 0,32720 0,39307 0,44783 0,48912 0,51485 0,52360

14,47751 18,74724 22,52101 25,65891 28,02432 29,49870 30,00000

15,52249 21,25276 27,47899 34,34109 41,97568 50,50129 60,00000

0,27092 0,37093 0,47960 0,59937 0,73261 0,88141 1,04720

53,52 56,39 60,23 65,14 71,17 78,35 86,60

Value Value Value Value Value Value Value
0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011

100 100 100 100 100 100 100

60 60 60 60 60 60 60

30 40 50 60 70 80 90

Value Value Value Value Value Value Value
150,000001 140,000001 130,000001 120,000001 110,000001 100,000001 90,0000011

2,61799 2,44346 2,26893 2,09440 1,91986 1,74533 1,57080

0,30000 0,38567 0,45963 0,51962 0,56382 0,59088 0,60000

0,30469 0,39594 0,47757 0,54640 0,59900 0,63215 0,64350

17,45760 22,68550 27,36302 31,30645 34,32008 36,21981 36,86990

12,54240 17,31450 22,63698 28,69355 35,67992 43,78019 53,13010

0,21891 0,30220 0,39509 0,50080 0,62273 0,76411 0,92730

43,43 46,30 50,24 55,44 62,07 70,26 80,00
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Calculations of helicopter ground speed

Value Value Value Value Value Value Value
80,0000011 70,0000011 60,0000011 50,0000011 40,0000011 30,0000011 20,0000011

1,39626 1,22173 1,04720 0,87266 0,69813 0,52360 0,34907

0,39392 0,37588 0,34641 0,30642 0,25712 0,20000 0,13681

0,40490 0,38534 0,35374 0,31143 0,26004 0,20136 0,13724

23,19883 22,07853 20,26790 17,84348 14,89895 11,53696 7,86318

76,80117 87,92147 99,73210 112,15652 125,10105 138,46304 152,13681

1,34043 1,53452 1,74065 1,95750 2,18343 2,41664 2,65529

98,86 106,35 113,81 120,90 127,28 132,62 136,65

Value Value Value Value Value Value Value
0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011

100 100 100 100 100 100 100

50 50 50 50 50 50 50

100 110 120 130 140 150 160

Value Value Value Value Value Value Value
80,0000011 70,0000011 60,0000011 50,0000011 40,0000011 30,0000011 20,0000011

1,39626 1,22173 1,04720 0,87266 0,69813 0,52360 0,34907

0,49240 0,46985 0,43301 0,38302 0,32139 0,25000 0,17101

0,51485 0,48912 0,44783 0,39307 0,32720 0,25268 0,17185

29,49870 28,02432 25,65891 22,52101 18,74724 14,47751 9,84655

70,50129 81,97568 94,34109 107,47899 121,25276 135,52249 150,15345

1,23048 1,43075 1,64656 1,87586 2,11626 2,36531 2,62067

95,72 105,38 115,14 124,51 133,00 140,13 145,51

Value Value Value Value Value Value Value
0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011

100 100 100 100 100 100 100

60 60 60 60 60 60 60

100 110 120 130 140 150 160

Value Value Value Value Value Value Value
80,0000011 70,0000011 60,0000011 50,0000011 40,0000011 30,0000011 20,0000011

1,39626 1,22173 1,04720 0,87266 0,69813 0,52360 0,34907

0,59088 0,56382 0,51962 0,45963 0,38567 0,30000 0,20521

0,63215 0,59900 0,54640 0,47757 0,39594 0,30469 0,20668

36,21981 34,32008 31,30645 27,36302 22,68550 17,45760 11,84192

63,78019 75,67992 88,69355 102,63698 117,31450 132,54240 148,15808

1,11317 1,32086 1,54799 1,79135 2,04752 2,31330 2,58585

91,09 103,11 115,44 127,38 138,23 147,36 154,25
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Calculations of helicopter ground speed

Value Value Value Value Value Value Value
10,0000011 1,1E-06 -9,9999989 -19,9999989 -29,9999989 -39,9999989 -49,9999989

0,17453 0,00000 -0,17453 -0,34907 -0,52360 -0,69813 -0,87266

0,06946 0,00000 -0,06946 -0,13681 -0,20000 -0,25712 -0,30642

0,06952 0,00000 -0,06952 -0,13724 -0,20136 -0,26004 -0,31143

3,98293 0,00000 -3,98293 -7,86318 -11,53696 -14,89895 -17,84348

166,01707 180,00000 193,98293 207,86318 221,53696 234,89895 247,84348

2,89754 3,14159 3,38564 3,62790 3,86655 4,09976 4,32568

139,15 140,00 139,15 136,65 132,62 127,28 120,90

Value Value Value Value Value Value Value
0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011

100 100 100 100 100 100 100

50 50 50 50 50 50 50

170 180 190 200 210 220 230

Value Value Value Value Value Value Value
10,0000011 1,1E-06 -9,9999989 -19,9999989 -29,9999989 -39,9999989 -49,9999989

0,17453 0,00000 -0,17453 -0,34907 -0,52360 -0,69813 -0,87266

0,08682 0,00000 -0,08682 -0,17101 -0,25000 -0,32139 -0,38302

0,08693 0,00000 -0,08693 -0,17185 -0,25268 -0,32720 -0,39307

4,98093 0,00000 -4,98092 -9,84655 -14,47751 -18,74724 -22,52101

165,01907 180,00000 194,98092 209,84655 224,47751 238,74724 252,52101

2,88013 3,14159 3,40306 3,66251 3,91787 4,16693 4,40732

148,86 150,00 148,86 145,51 140,13 133,00 124,51

Value Value Value Value Value Value Value
0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011

100 100 100 100 100 100 100

60 60 60 60 60 60 60

170 180 190 200 210 220 230

Value Value Value Value Value Value Value
10,0000011 1,1E-06 -9,9999989 -19,9999989 -29,9999989 -39,9999989 -49,9999989

0,17453 0,00000 -0,17453 -0,34907 -0,52360 -0,69813 -0,87266

0,10419 0,00000 -0,10419 -0,20521 -0,30000 -0,38567 -0,45963

0,10438 0,00000 -0,10438 -0,20668 -0,30469 -0,39594 -0,47757

5,98044 0,00000 -5,98044 -11,84191 -17,45760 -22,68550 -27,36302

164,01956 180,00000 195,98044 211,84191 227,45760 242,68550 257,36302

2,86268 3,14159 3,42050 3,69734 3,96988 4,23566 4,49183

158,54 160,00 158,54 154,25 147,36 138,23 127,38
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Calculations of helicopter ground speed

Value Value Value Value Value Value Value
-59,9999989 -69,9999989 -79,9999989 -89,9999989 -99,9999989 -109,999999 -119,999999

-1,04720 -1,22173 -1,39626 -1,57080 -1,74533 -1,91986 -2,09440

-0,34641 -0,37588 -0,39392 -0,40000 -0,39392 -0,37588 -0,34641

-0,35374 -0,38534 -0,40490 -0,41152 -0,40490 -0,38534 -0,35374

-20,26790 -22,07853 -23,19883 -23,57818 -23,19883 -22,07853 -20,26790

260,26790 272,07853 283,19883 293,57818 303,19883 312,07853 320,26790

4,54253 4,74867 4,94275 5,12391 5,29182 5,44680 5,58973

113,81 106,35 98,86 91,65 84,97 78,99 73,81

Value Value Value Value Value Value Value
0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011

100 100 100 100 100 100 100

50 50 50 50 50 50 50

240 250 260 270 280 290 300

Value Value Value Value Value Value Value
-59,9999989 -69,9999989 -79,9999989 -89,9999989 -99,9999989 -109,999999 -119,999999

-1,04720 -1,22173 -1,39626 -1,57080 -1,74533 -1,91986 -2,09440

-0,43301 -0,46985 -0,49240 -0,50000 -0,49240 -0,46985 -0,43301

-0,44783 -0,48912 -0,51485 -0,52360 -0,51485 -0,48912 -0,44783

-25,65891 -28,02432 -29,49870 -30,00000 -29,49870 -28,02432 -25,65891

265,65890 278,02432 289,49870 300,00000 309,49870 318,02432 325,65891

4,63662 4,85244 5,05271 5,23599 5,40177 5,55057 5,68382

115,14 105,38 95,72 86,60 78,35 71,17 65,14

Value Value Value Value Value Value Value
0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011

100 100 100 100 100 100 100

60 60 60 60 60 60 60

240 250 260 270 280 290 300

Value Value Value Value Value Value Value
-59,9999989 -69,9999989 -79,9999989 -89,9999989 -99,9999989 -109,999999 -119,999999

-1,04720 -1,22173 -1,39626 -1,57080 -1,74533 -1,91986 -2,09440

-0,51962 -0,56382 -0,59088 -0,60000 -0,59088 -0,56382 -0,51962

-0,54640 -0,59900 -0,63215 -0,64350 -0,63215 -0,59900 -0,54640

-31,30645 -34,32008 -36,21981 -36,86990 -36,21981 -34,32008 -31,30645

271,30644 284,32008 296,21981 306,86990 316,21981 324,32008 331,30645

4,73519 4,96232 5,17001 5,35589 5,51908 5,66045 5,78239

115,44 103,11 91,09 80,00 70,26 62,07 55,44
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Calculations of helicopter ground speed

Value Value Value Value Value Value
-129,999999 -139,999999 -149,999999 -159,999999 -169,999999 -179,999999

-2,26893 -2,44346 -2,61799 -2,79253 -2,96706 -3,14159

-0,30642 -0,25712 -0,20000 -0,13681 -0,06946 0,00000

-0,31143 -0,26004 -0,20136 -0,13724 -0,06952 0,00000

-17,84348 -14,89895 -11,53696 -7,86318 -3,98293 0,00000

327,84348 334,89895 341,53696 347,86318 353,98293 360,00000

5,72195 5,84509 5,96094 6,07136 6,17817 6,28319

69,48 66,00 63,34 61,47 60,37 60,00

Value Value Value Value Value Value
0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011

100 100 100 100 100 100

50 50 50 50 50 50

310 320 330 340 350 360

Value Value Value Value Value Value
-129,999999 -139,999999 -149,999999 -159,999999 -169,999999 -179,999999

-2,26893 -2,44346 -2,61799 -2,79253 -2,96706 -3,14159

-0,38302 -0,32139 -0,25000 -0,17101 -0,08682 0,00000

-0,39307 -0,32720 -0,25268 -0,17185 -0,08693 0,00000

-22,52101 -18,74724 -14,47751 -9,84655 -4,98093 0,00000

332,52101 338,74724 344,47751 349,84655 354,98092 360,00000

5,80359 5,91225 6,01227 6,10597 6,19559 6,28319

60,23 56,39 53,52 51,54 50,38 50,00

Value Value Value Value Value Value
0,0000011 0,0000011 0,0000011 0,0000011 0,0000011 0,0000011

100 100 100 100 100 100

60 60 60 60 60 60

310 320 330 340 350 360

Value Value Value Value Value Value
-129,999999 -139,999999 -149,999999 -159,999999 -169,999999 -179,999999

-2,26893 -2,44346 -2,61799 -2,79253 -2,96706 -3,14159

-0,45963 -0,38567 -0,30000 -0,20521 -0,10419 0,00000

-0,47757 -0,39594 -0,30469 -0,20668 -0,10438 0,00000

-27,36302 -22,68550 -17,45760 -11,84192 -5,98044 0,00000

337,36302 342,68550 347,45760 351,84191 355,98044 360,00000

5,88810 5,98099 6,06428 6,14080 6,21303 6,28319

50,24 46,30 43,43 41,49 40,37 40,00
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Calculations of helicopter ground speed
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Calculations of helicopter ground speed
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Calculations of helicopter ground speed
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A.9 Calculation of helicopter round trip between Berlevåg and 74,5°N/37°E 



Summary of head/tail and side wind calculations

Appendix A.9 page 1

Summary of caculation results

Wind speed 0 20 25 30 35 40 45 50 knots
Leg 1 T 55,6 64,5 67,2 70,1 73,3 76,8 80,6 84,9 minutes
Leg 2 T 51,8 60,1 62,6 65,3 68,3 71,5 75,1 79,1 minutes
Leg 3 T 51,8 45,5 44,2 42,9 41,7 40,6 39,5 38,5 minutes
Leg 4 T 55,6 48,9 47,4 46,1 44,8 43,6 42,4 41,4 minutes
Time 214,8 219,0 221,4 224,4 228,1 232,5 237,7 243,8 minutes

Wind speed 0 20 25 30 35 40 45 50 knots
Head 107 125 130 135 142 148 156 164 minutes
Tail 107 94 92 89 87 84 82 80 minutes

Wind speed 0 20 25 30 35 40 45 50 knots
Time 214,8 219,0 221,4 224,4 228,1 232,5 237,7 243,8 minutes
Delta time 4,2 6,6 9,6 13,3 17,7 22,9 29,0 minutes

2,4 3,0 3,7 4,4 5,2 6,1

Wind speed 0 20 25 30 35 40 45 50 knots
Head/tail 215 219 221 224 228 233 238 244 minutes
Side 215 217 218 219 221 223 225 228 minutes
None 215 215 215 215 215 215 215 215 minutes

Side wind situation calculated by adding 90 degrees to wind direction and recalculating
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BVG - 7450370
Cruising speed 145

OUT 1000
Leg 1
Lat1/Long1 70,87 29,03
Lat2/Long2 72,79 32,75
Wind speed 20,00
Wind directiection 33,00
Initial heading 29,40
Average heading for leg 31,20
Time to fly 64,51

Leg 2
Lat2/Long2 72,79 32,75
Lat3/Long3 74,50 37,00
Wind speed 20,00
Wind directiection 33,00
Initial heading 32,93
Average heading for leg 34,80
Time to fly 60,09

IN
Leg 3
Lat3/Long3 74,50 37,00
Lat2/Long2 72,79 32,75
Wind speed 20,00
Wind directiection 33,00
Initial heading -142,99
Average heading for leg 214,80
Time to fly 45,53

Leg 4
Lat2/Long2 72,79 32,75
Lat1/Long1 70,87 29,03
Wind speed 20,00
Wind directiection 33,00
Initial heading -147,08
Average heading for leg 211,20
Time to fly 48,87

Round trip WIND mins hours NO WIND ∆ time
Leg 1 64,51 55,61 8,89
Leg 2 60,09 124,60 2,077 51,81 8,29
Leg 3 45,53 51,81 -6,28
Leg 4 48,87 94,41 1,573 55,61 -6,74
TOTAL 219,01 219,01 3,65 214,85 4,16
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Haversine formula Leg 1
Name dec radians
BVG Lat1 70,8708 1,2369288

Long1 29,0348 0,5067529
NR Border north Lat2 72,788729 1,270403

Long2 32,751556 0,5716225
Radius km 6371 y 0,0340559
Radius nm 3438 x 0,0191812
Lat1 1,2369288
Long1 0,50675286
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad 0,5129413
Distance nm 134,40 0,4032 134,8 bearing deg 29,39

Leg 1
Known variables Value Units No wind
Heading A to B (C:course) 31,20 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 20,00 knots
Wind direction (Wd) 33,00 deg

Calculated values Value Units
Av:angle WS to GS 178,20000 deg
Av:convert deg to radians 3,11018 rad
sin(Aw)=sin(Av)*WS/TAS 0,00433
Aw (arcsin of previous result) 0,00433 rad
Aw:wind corr angle 0,24824 deg
Ac:angle WS to TAS 1,55176 deg
Ac:convert deg to radians 0,02708 rad
GS:ground speed(G) 125,01 knots 145,00
Flying time outbound 64,50835 min 55,61444 8,89
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Appendix A.9 page 5

Haversine formula Leg 2
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 74,50 1,3002703

Long2 37,00 0,6457718
Radius km 6371 y 0,0305643
Radius nm 3438 x 0,0197974
Lat1 1,27040298
Long1 0,57162248
Lat2 1,30027029
Long2 0,64577182

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad 0,5747772
Distance nm 125,20 0,3756 125,6 bearing deg 32,93

Leg 2
Known variables Value Units No wind
Heading A to B (C:course) 34,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 20 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 181,80000 deg
Av:convert deg to radians 3,17301 rad
sin(Aw)=sin(Av)*WS/TAS -0,00433
Aw (arcsin of previous result)-0,00433 rad
Aw:wind corr angle -0,24824 deg
Ac:angle WS to TAS -1,55176 deg
Ac:convert deg to radians -0,02708 rad
GS:ground speed(G) 125,01 knots 145,00
Flying time outbound 60,09420 min 51,80887 8,29
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Haversine formula Leg 3
Name dec radians
BVG Lat1 74,50 1,3002703

Long1 37,00 0,6457718
NR Border north Lat2 72,79 1,270403

Long2 32,75 0,5716225
Radius km 6371 y -0,029079
Radius nm 3438 x -0,02192
Lat1 1,30027029
Long1 0,64577182
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad -2,495656
Distance nm 125,20 0,3756 125,6 bearing deg -142,99

Leg 3
Known variables Value Units No wind
Heading A to B (C:course) 214,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 20 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 361,80000 deg
Av:convert deg to radians 6,31460 rad
sin(Aw)=sin(Av)*WS/TAS 0,00433
Aw (arcsin of previous result) 0,00433 rad
Aw:wind corr angle 0,24824 deg
Ac:angle WS to TAS -182,04824 deg
Ac:convert deg to radians -3,17734 rad
GS:ground speed(G) 164,99 knots 145,00
Flying time outbound 45,53211 min 51,80887 -6,28
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Haversine formula Leg 4
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 70,87 1,2369288

Long2 29,03 0,5067529
Radius km 6371 y -0,03281
Radius nm 3438 x -0,021243
Lat1 1,27040298
Long1 0,57162248
Lat2 1,2369288
Long2 0,50675286

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad -2,567006
Distance nm 134,40 0,4032 134,8 bearing deg -147,08

Leg 4
Value Units No wind

Heading A to B (C:course) -147,08 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 20 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS -0,07860 deg
Av:convert deg to radians -0,00137 rad
sin(Aw)=sin(Av)*WS/TAS -0,00019
Aw (arcsin of previous result)-0,00019 rad
Aw:wind corr angle -0,01084 deg
Ac:angle WS to TAS 180,08944 deg
Ac:convert deg to radians 3,14315 rad
GS:ground speed(G) 165,00 knots 145,00
Flying time outbound 48,87330 min 55,61444 -6,74
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BVG - 7450370 25 %
Cruising speed 145

OUT 1000
Leg 1
Lat1/Long1 70,87 29,03
Lat2/Long2 72,79 32,75
Wind speed 25,00
Wind directiection 33,00
Initial heading 29,40
Average heading for leg 31,20
Time to fly 67,20

Leg 2
Lat2/Long2 72,79 32,75
Lat3/Long3 74,50 37,00
Wind speed 25,00
Wind directiection 33,00
Initial heading 32,93
Average heading for leg 34,80
Time to fly 62,60

IN
Leg 3
Lat3/Long3 74,50 37,00
Lat2/Long2 72,79 32,75
Wind speed 25,00
Wind directiection 33,00
Initial heading -142,99
Average heading for leg 214,80
Time to fly 44,19

Leg 4
Lat2/Long2 72,79 32,75
Lat1/Long1 70,87 29,03
Wind speed 25,00
Wind directiection 33,00
Initial heading -147,08
Average heading for leg 211,20
Time to fly 47,44

Round trip WIND mins hours NO WIND
Leg 1 67,20 55,61 11,58
Leg 2 62,60 129,79 2,163 51,81 10,79
Leg 3 44,19 51,81 -7,62
Leg 4 47,44 91,63 1,527 55,61 -8,18
TOTAL 221,42 221,42 3,69 214,85 6,58
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Haversine formula Leg 1
Name dec radians
BVG Lat1 70,8708 1,2369288

Long1 29,0348 0,5067529
NR Border north Lat2 72,788729 1,270403

Long2 32,751556 0,5716225
Radius km 6371 y 0,0340559
Radius nm 3438 x 0,0191812
Lat1 1,2369288
Long1 0,50675286
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad 0,5129413
Distance nm 134,40 0,4032 134,8 bearing deg 29,39

Leg 1
Known variables Value Units No wind
Heading A to B (C:course) 31,20 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 25,00 knots
Wind direction (Wd) 33,00 deg

Calculated values Value Units
Av:angle WS to GS 178,20000 deg
Av:convert deg to radians 3,11018 rad
sin(Aw)=sin(Av)*WS/TAS 0,00542
Aw (arcsin of previous result) 0,00542 rad
Aw:wind corr angle 0,31030 deg
Ac:angle WS to TAS 1,48970 deg
Ac:convert deg to radians 0,02600 rad
GS:ground speed(G) 120,01 knots 145,00
Flying time outbound 67,19506 min 55,61444 11,58
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Haversine formula Leg 2
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 74,50 1,3002703

Long2 37,00 0,6457718
Radius km 6371 y 0,0305643
Radius nm 3438 x 0,0197974
Lat1 1,27040298
Long1 0,57162248
Lat2 1,30027029
Long2 0,64577182

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad 0,5747772
Distance nm 125,20 0,3756 125,6 bearing deg 32,93

Leg 2
Known variables Value Units No wind
Heading A to B (C:course) 34,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 25 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 181,80000 deg
Av:convert deg to radians 3,17301 rad
sin(Aw)=sin(Av)*WS/TAS -0,00542
Aw (arcsin of previous result)-0,00542 rad
Aw:wind corr angle -0,31030 deg
Ac:angle WS to TAS -1,48970 deg
Ac:convert deg to radians -0,02600 rad
GS:ground speed(G) 120,01 knots 145,00
Flying time outbound 62,59706 min 51,80887 10,79
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Haversine formula Leg 3
Name dec radians
BVG Lat1 74,50 1,3002703

Long1 37,00 0,6457718
NR Border north Lat2 72,79 1,270403

Long2 32,75 0,5716225
Radius km 6371 y -0,029079
Radius nm 3438 x -0,02192
Lat1 1,30027029
Long1 0,64577182
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad -2,495656
Distance nm 125,20 0,3756 125,6 bearing deg -142,99

Leg 3
Known variables Value Units No wind
Heading A to B (C:course) 214,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 25 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 361,80000 deg
Av:convert deg to radians 6,31460 rad
sin(Aw)=sin(Av)*WS/TAS 0,00542
Aw (arcsin of previous result) 0,00542 rad
Aw:wind corr angle 0,31030 deg
Ac:angle WS to TAS -182,11030 deg
Ac:convert deg to radians -3,17842 rad
GS:ground speed(G) 169,99 knots 145,00
Flying time outbound 44,19368 min 51,80887 -7,62
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Haversine formula Leg 4
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 70,87 1,2369288

Long2 29,03 0,5067529
Radius km 6371 y -0,03281
Radius nm 3438 x -0,021243
Lat1 1,27040298
Long1 0,57162248
Lat2 1,2369288
Long2 0,50675286

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad -2,567006
Distance nm 134,40 0,4032 134,8 bearing deg -147,08

Leg 4
Value Units No wind

Heading A to B (C:course) -147,08 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 25 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS -0,07860 deg
Av:convert deg to radians -0,00137 rad
sin(Aw)=sin(Av)*WS/TAS -0,00024
Aw (arcsin of previous result)-0,00024 rad
Aw:wind corr angle -0,01355 deg
Ac:angle WS to TAS 180,09215 deg
Ac:convert deg to radians 3,14320 rad
GS:ground speed(G) 170,00 knots 145,00
Flying time outbound 47,43585 min 55,61444 -8,18
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BVG - 7450370 50 %
Cruising speed 145

OUT 1000
Leg 1
Lat1/Long1 70,87 29,03
Lat2/Long2 72,79 32,75
Wind speed 30,00
Wind directiection 33,00
Initial heading 29,40
Average heading for leg 31,20
Time to fly 70,12

Leg 2
Lat2/Long2 72,79 32,75
Lat3/Long3 74,50 37,00
Wind speed 30,00
Wind directiection 33,00
Initial heading 32,93
Average heading for leg 34,80
Time to fly 65,32

IN
Leg 3
Lat3/Long3 74,50 37,00
Lat2/Long2 72,79 32,75
Wind speed 30,00
Wind directiection 33,00
Initial heading -142,99
Average heading for leg 214,80
Time to fly 42,93

Leg 4
Lat2/Long2 72,79 32,75
Lat1/Long1 70,87 29,03
Wind speed 30,00
Wind directiection 33,00
Initial heading -147,08
Average heading for leg 211,20
Time to fly 46,08

Round trip WIND mins hours NO WIND ∆ time
Leg 1 70,12 55,61 14,50
Leg 2 65,32 135,43 2,257 51,81 13,51
Leg 3 42,93 51,81 -8,88
Leg 4 46,08 89,01 1,484 55,61 -9,53
TOTAL 224,45 224,45 3,74 214,85 9,60



Calculations of head/tail wind situation for all four legs of the round trip 
Berlevåg to 74,5°N/37°E

Appendix A.9 page 14

Haversine formula Leg 1
Name dec radians
BVG Lat1 70,8708 1,2369288

Long1 29,0348 0,5067529
NR Border north Lat2 72,788729 1,270403

Long2 32,751556 0,5716225
Radius km 6371 y 0,0340559
Radius nm 3438 x 0,0191812
Lat1 1,2369288
Long1 0,50675286
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad 0,5129413
Distance nm 134,40 0,4032 134,8 bearing deg 29,39

Leg 1
Known variables Value Units No wind
Heading A to B (C:course) 31,20 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 30,00 knots
Wind direction (Wd) 33,00 deg

Calculated values Value Units
Av:angle WS to GS 178,20000 deg
Av:convert deg to radians 3,11018 rad
sin(Aw)=sin(Av)*WS/TAS 0,00650
Aw (arcsin of previous result) 0,00650 rad
Aw:wind corr angle 0,37236 deg
Ac:angle WS to TAS 1,42764 deg
Ac:convert deg to radians 0,02492 rad
GS:ground speed(G) 115,01 knots 145,00
Flying time outbound 70,11539 min 55,61444 14,50
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Haversine formula Leg 2
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 74,50 1,3002703

Long2 37,00 0,6457718
Radius km 6371 y 0,0305643
Radius nm 3438 x 0,0197974
Lat1 1,27040298
Long1 0,57162248
Lat2 1,30027029
Long2 0,64577182

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad 0,5747772
Distance nm 125,20 0,3756 125,6 bearing deg 32,93

Leg 2
Known variables Value Units No wind
Heading A to B (C:course) 34,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 30 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 181,80000 deg
Av:convert deg to radians 3,17301 rad
sin(Aw)=sin(Av)*WS/TAS -0,00650
Aw (arcsin of previous result)-0,00650 rad
Aw:wind corr angle -0,37236 deg
Ac:angle WS to TAS -1,42764 deg
Ac:convert deg to radians -0,02492 rad
GS:ground speed(G) 115,01 knots 145,00
Flying time outbound 65,31756 min 51,80887 13,51
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Haversine formula Leg 3
Name dec radians
BVG Lat1 74,50 1,3002703

Long1 37,00 0,6457718
NR Border north Lat2 72,79 1,270403

Long2 32,75 0,5716225
Radius km 6371 y -0,029079
Radius nm 3438 x -0,02192
Lat1 1,30027029
Long1 0,64577182
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad -2,495656
Distance nm 125,20 0,3756 125,6 bearing deg -142,99

Leg 3
Known variables Value Units No wind
Heading A to B (C:course) 214,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 30 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 361,80000 deg
Av:convert deg to radians 6,31460 rad
sin(Aw)=sin(Av)*WS/TAS 0,00650
Aw (arcsin of previous result) 0,00650 rad
Aw:wind corr angle 0,37236 deg
Ac:angle WS to TAS -182,17236 deg
Ac:convert deg to radians -3,17951 rad
GS:ground speed(G) 174,98 knots 145,00
Flying time outbound 42,93173 min 51,80887 -8,88
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Haversine formula Leg 4
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 70,87 1,2369288

Long2 29,03 0,5067529
Radius km 6371 x -0,03281
Radius nm 3438 y -0,021243
Lat1 1,27040298
Long1 0,57162248
Lat2 1,2369288
Long2 0,50675286

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad -2,567006
Distance nm 134,40 0,4032 134,8 bearing deg -147,08

Leg 4
Value Units No wind

Heading A to B (C:course) -147,08 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 30 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS -0,07860 deg
Av:convert deg to radians -0,00137 rad
sin(Aw)=sin(Av)*WS/TAS -0,00028
Aw (arcsin of previous result)-0,00028 rad
Aw:wind corr angle -0,01626 deg
Ac:angle WS to TAS 180,09486 deg
Ac:convert deg to radians 3,14325 rad
GS:ground speed(G) 175,00 knots 145,00
Flying time outbound 46,08054 min 55,61444 -9,53
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BVG - 7450370 75 %
Cruising speed 145

OUT 1000
Leg 1
Lat1/Long1 70,87 29,03
Lat2/Long2 72,79 32,75
Wind speed 35,00
Wind directiection 33,00
Initial heading 29,40
Average heading for leg 31,20
Time to fly 73,30

Leg 2
Lat2/Long2 72,79 32,75
Lat3/Long3 74,50 37,00
Wind speed 35,00
Wind directiection 33,00
Initial heading 32,93
Average heading for leg 34,80
Time to fly 68,29

IN
Leg 3
Lat3/Long3 74,50 37,00
Lat2/Long2 72,79 32,75
Wind speed 35,00
Wind directiection 33,00
Initial heading -142,99
Average heading for leg 214,80
Time to fly 41,74

Leg 4
Lat2/Long2 72,79 32,75
Lat1/Long1 70,87 29,03
Wind speed 35,00
Wind directiection 33,00
Initial heading -147,08
Average heading for leg 211,20
Time to fly 44,80

Round trip WIND mins hours NO WIND ∆ time
Leg 1 73,30 55,61 17,69
Leg 2 68,29 141,59 2,36 51,81 16,48
Leg 3 41,74 51,81 -10,07
Leg 4 44,80 86,54 1,442 55,61 -10,81
TOTAL 228,13 228,13 3,80 214,85 13,28



Calculations of head/tail wind situation for all four legs of the round trip 
Berlevåg to 74,5°N/37°E

Appendix A.9 page 19

Haversine formula Leg 1
Name dec radians
BVG Lat1 70,8708 1,2369288

Long1 29,0348 0,5067529
NR Border north Lat2 72,788729 1,270403

Long2 32,751556 0,5716225
Radius km 6371 y 0,0340559
Radius nm 3438 x 0,0191812
Lat1 1,2369288
Long1 0,50675286
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad 0,5129413
Distance nm 134,40 0,4032 134,8 bearing deg 29,39

Leg 1
Known variables Value Units No wind
Heading A to B (C:course) 31,20 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 35,00 knots
Wind direction (Wd) 33,00 deg

Calculated values Value Units
Av:angle WS to GS 178,20000 deg
Av:convert deg to radians 3,11018 rad
sin(Aw)=sin(Av)*WS/TAS 0,00758
Aw (arcsin of previous result) 0,00758 rad
Aw:wind corr angle 0,43442 deg
Ac:angle WS to TAS 1,36558 deg
Ac:convert deg to radians 0,02383 rad
GS:ground speed(G) 110,01 knots 145,00
Flying time outbound 73,30121 min 55,61444 17,69
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Haversine formula Leg 2
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 74,50 1,3002703

Long2 37,00 0,6457718
Radius km 6371 y 0,0305643
Radius nm 3438 x 0,0197974
Lat1 1,27040298
Long1 0,57162248
Lat2 1,30027029
Long2 0,64577182

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad 0,5747772
Distance nm 125,20 0,3756 125,6 bearing deg 32,93

Leg 2
Known variables Value Units No wind
Heading A to B (C:course) 34,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 35 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 181,80000 deg
Av:convert deg to radians 3,17301 rad
sin(Aw)=sin(Av)*WS/TAS -0,00758
Aw (arcsin of previous result)-0,00758 rad
Aw:wind corr angle -0,43442 deg
Ac:angle WS to TAS -1,36558 deg
Ac:convert deg to radians -0,02383 rad
GS:ground speed(G) 110,01 knots 145,00
Flying time outbound 68,28538 min 51,80887 16,48
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Haversine formula Leg 3
Name dec radians
BVG Lat1 74,50 1,3002703

Long1 37,00 0,6457718
NR Border north Lat2 72,79 1,270403

Long2 32,75 0,5716225
Radius km 6371 y -0,029079
Radius nm 3438 x -0,02192
Lat1 1,30027029
Long1 0,64577182
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad -2,495656
Distance nm 125,20 0,3756 125,6 bearing deg -142,99

Leg 3
Known variables Value Units No wind
Heading A to B (C:course) 214,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 35 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 361,80000 deg
Av:convert deg to radians 6,31460 rad
sin(Aw)=sin(Av)*WS/TAS 0,00758
Aw (arcsin of previous result) 0,00758 rad
Aw:wind corr angle 0,43442 deg
Ac:angle WS to TAS -182,23442 deg
Ac:convert deg to radians -3,18059 rad
GS:ground speed(G) 179,98 knots 145,00
Flying time outbound 41,73990 min 51,80887 -10,07
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Haversine formula Leg 4
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 70,87 1,2369288

Long2 29,03 0,5067529
Radius km 6371 x -0,03281
Radius nm 3438 y -0,021243
Lat1 1,27040298
Long1 0,57162248
Lat2 1,2369288
Long2 0,50675286

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad -2,567006
Distance nm 134,40 0,4032 134,8 bearing deg -147,08

Leg 4
Value Units No wind

Heading A to B (C:course) -147,08 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 35 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS -0,07860 deg
Av:convert deg to radians -0,00137 rad
sin(Aw)=sin(Av)*WS/TAS -0,00033
Aw (arcsin of previous result)-0,00033 rad
Aw:wind corr angle -0,01897 deg
Ac:angle WS to TAS 180,09757 deg
Ac:convert deg to radians 3,14330 rad
GS:ground speed(G) 180,00 knots 145,00
Flying time outbound 44,80053 min 55,61444 -10,81
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BVG - 7450370 100 %
Cruising speed 145

OUT 1000
Leg 1
Lat1/Long1 70,87 29,03
Lat2/Long2 72,79 32,75
Wind speed 40,00
Wind directiection 33,00
Initial heading 29,40
Average heading for leg 31,20
Time to fly 76,79

Leg 2
Lat2/Long2 72,79 32,75
Lat3/Long3 74,50 37,00
Wind speed 40,00
Wind directiection 33,00
Initial heading 32,93
Average heading for leg 34,80
Time to fly 71,54

IN
Leg 3
Lat3/Long3 74,50 37,00
Lat2/Long2 72,79 32,75
Wind speed 40,00
Wind directiection 33,00
Initial heading -142,99
Average heading for leg 214,80
Time to fly 40,61

Leg 4
Lat2/Long2 72,79 32,75
Lat1/Long1 70,87 29,03
Wind speed 40,00
Wind directiection 33,00
Initial heading -147,08
Average heading for leg 211,20
Time to fly 43,59

Round trip WIND mins hours NO WIND
Leg 1 76,79 55,61 21,18
Leg 2 71,54 148,33 2,472 51,81 19,73
Leg 3 40,61 51,81 -11,20
Leg 4 43,59 84,20 1,403 55,61 -12,02
TOTAL 232,53 232,53 3,88 214,85 17,68
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Haversine formula Leg 1
Name dec radians
BVG Lat1 70,8708 1,2369288

Long1 29,0348 0,5067529
NR Border north Lat2 72,788729 1,270403

Long2 32,751556 0,5716225
Radius km 6371 y 0,0340559
Radius nm 3438 x 0,0191812
Lat1 1,2369288
Long1 0,50675286
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad 0,5129413
Distance nm 134,40 0,4032 134,8 bearing deg 29,39

Leg 1
Known variables Value Units No wind
Heading A to B (C:course) 31,20 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 40,00 knots
Wind direction (Wd) 33,00 deg

Calculated values Value Units
Av:angle WS to GS 178,20000 deg
Av:convert deg to radians 3,11018 rad
sin(Aw)=sin(Av)*WS/TAS 0,00867
Aw (arcsin of previous result) 0,00867 rad
Aw:wind corr angle 0,49648 deg
Ac:angle WS to TAS 1,30352 deg
Ac:convert deg to radians 0,02275 rad
GS:ground speed(G) 105,01 knots 145,00
Flying time outbound 76,79043 min 55,61444 21,18
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Haversine formula Leg 2
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 74,50 1,3002703

Long2 37,00 0,6457718
Radius km 6371 y 0,0305643
Radius nm 3438 x 0,0197974
Lat1 1,27040298
Long1 0,57162248
Lat2 1,30027029
Long2 0,64577182

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad 0,5747772
Distance nm 125,20 0,3756 125,6 bearing deg 32,93

Leg 2
Known variables Value Units No wind
Heading A to B (C:course) 34,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 40 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 181,80000 deg
Av:convert deg to radians 3,17301 rad
sin(Aw)=sin(Av)*WS/TAS -0,00867
Aw (arcsin of previous result)-0,00867 rad
Aw:wind corr angle -0,49648 deg
Ac:angle WS to TAS -1,30352 deg
Ac:convert deg to radians -0,02275 rad
GS:ground speed(G) 105,01 knots 145,00
Flying time outbound 71,53585 min 51,80887 19,73
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Haversine formula Leg 3
Name dec radians
BVG Lat1 74,50 1,3002703

Long1 37,00 0,6457718
NR Border north Lat2 72,79 1,270403

Long2 32,75 0,5716225
Radius km 6371 y -0,029079
Radius nm 3438 x -0,02192
Lat1 1,30027029
Long1 0,64577182
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad -2,495656
Distance nm 125,20 0,3756 125,6 bearing deg -142,99

Leg 3
Known variables Value Units No wind
Heading A to B (C:course) 214,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 40 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 361,80000 deg
Av:convert deg to radians 6,31460 rad
sin(Aw)=sin(Av)*WS/TAS 0,00867
Aw (arcsin of previous result) 0,00867 rad
Aw:wind corr angle 0,49648 deg
Ac:angle WS to TAS -182,29648 deg
Ac:convert deg to radians -3,18167 rad
GS:ground speed(G) 184,97 knots 145,00
Flying time outbound 40,61248 min 51,80887 -11,20
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Haversine formula Leg 4
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 70,87 1,2369288

Long2 29,03 0,5067529
Radius km 6371 x -0,03281
Radius nm 3438 y -0,021243
Lat1 1,27040298
Long1 0,57162248
Lat2 1,2369288
Long2 0,50675286

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad -2,567006
Distance nm 134,40 0,4032 134,8 bearing deg -147,08

Leg 4
Value Units No wind

Heading A to B (C:course) -147,08 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 40 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS -0,07860 deg
Av:convert deg to radians -0,00137 rad
sin(Aw)=sin(Av)*WS/TAS -0,00038
Aw (arcsin of previous result)-0,00038 rad
Aw:wind corr angle -0,02168 deg
Ac:angle WS to TAS 180,10028 deg
Ac:convert deg to radians 3,14334 rad
GS:ground speed(G) 185,00 knots 145,00
Flying time outbound 43,58970 min 55,61444 -12,02



Calculations of head/tail wind situation for all four legs of the round trip 
Berlevåg to 74,5°N/37°E

Appendix A.9 page 28

BVG - 7450370 125 %
Cruising speed 145

OUT 1000
Leg 1
Lat1/Long1 70,87 29,03
Lat2/Long2 72,79 32,75
Wind speed 45,00
Wind directiection 33,00
Initial heading 29,40
Average heading for leg 31,20
Time to fly 80,63

Leg 2
Lat2/Long2 72,79 32,75
Lat3/Long3 74,50 37,00
Wind speed 45,00
Wind directiection 33,00
Initial heading 32,93
Average heading for leg 34,80
Time to fly 75,11

IN
Leg 3
Lat3/Long3 74,50 37,00
Lat2/Long2 72,79 32,75
Wind speed 45,00
Wind directiection 33,00
Initial heading -142,99
Average heading for leg 214,80
Time to fly 39,54

Leg 4
Lat2/Long2 72,79 32,75
Lat1/Long1 70,87 29,03
Wind speed 45,00
Wind directiection 33,00
Initial heading -147,08
Average heading for leg 211,20
Time to fly 42,44

Round trip WIND mins hours NO WIND ∆ time
Leg 1 80,63 55,61 25,01
Leg 2 75,11 155,74 2,596 51,81 23,30
Leg 3 39,54 51,81 -12,26
Leg 4 42,44 81,99 1,366 55,61 -13,17
TOTAL 237,73 237,73 3,96 214,85 22,88
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Haversine formula Leg 1
Name dec radians
BVG Lat1 70,8708 1,2369288

Long1 29,0348 0,5067529
NR Border north Lat2 72,788729 1,270403

Long2 32,751556 0,5716225
Radius km 6371 y 0,0340559
Radius nm 3438 x 0,0191812
Lat1 1,2369288
Long1 0,50675286
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad 0,5129413
Distance nm 134,40 0,4032 134,8 bearing deg 29,39

Leg 1
Known variables Value Units No wind
Heading A to B (C:course) 31,20 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 45,00 knots
Wind direction (Wd) 33,00 deg

Calculated values Value Units
Av:angle WS to GS 178,20000 deg
Av:convert deg to radians 3,11018 rad
sin(Aw)=sin(Av)*WS/TAS 0,00975
Aw (arcsin of previous result) 0,00975 rad
Aw:wind corr angle 0,55854 deg
Ac:angle WS to TAS 1,24146 deg
Ac:convert deg to radians 0,02167 rad
GS:ground speed(G) 100,02 knots 145,00
Flying time outbound 80,62858 min 55,61444 25,01
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Haversine formula Leg 2
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 74,50 1,3002703

Long2 37,00 0,6457718
Radius km 6371 y 0,0305643
Radius nm 3438 x 0,0197974
Lat1 1,27040298
Long1 0,57162248
Lat2 1,30027029
Long2 0,64577182

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad 0,5747772
Distance nm 125,20 0,3756 125,6 bearing deg 32,93

Leg 2
Known variables Value Units No wind
Heading A to B (C:course) 34,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 45 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 181,80000 deg
Av:convert deg to radians 3,17301 rad
sin(Aw)=sin(Av)*WS/TAS -0,00975
Aw (arcsin of previous result)-0,00975 rad
Aw:wind corr angle -0,55854 deg
Ac:angle WS to TAS -1,24146 deg
Ac:convert deg to radians -0,02167 rad
GS:ground speed(G) 100,02 knots 145,00
Flying time outbound 75,11136 min 51,80887 23,30
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Haversine formula Leg 3
Name dec radians
BVG Lat1 74,50 1,3002703

Long1 37,00 0,6457718
NR Border north Lat2 72,79 1,270403

Long2 32,75 0,5716225
Radius km 6371 y -0,029079
Radius nm 3438 x -0,02192
Lat1 1,30027029
Long1 0,64577182
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad -2,495656
Distance nm 125,20 0,3756 125,6 bearing deg -142,99

Leg 3
Known variables Value Units No wind
Heading A to B (C:course) 214,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 45 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 361,80000 deg
Av:convert deg to radians 6,31460 rad
sin(Aw)=sin(Av)*WS/TAS 0,00975
Aw (arcsin of previous result) 0,00975 rad
Aw:wind corr angle 0,55854 deg
Ac:angle WS to TAS -182,35854 deg
Ac:convert deg to radians -3,18276 rad
GS:ground speed(G) 189,97 knots 145,00
Flying time outbound 39,54440 min 51,80887 -12,26
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Haversine formula Leg 4
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 70,87 1,2369288

Long2 29,03 0,5067529
Radius km 6371 y -0,03281
Radius nm 3438 x -0,021243
Lat1 1,27040298
Long1 0,57162248
Lat2 1,2369288
Long2 0,50675286

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad -2,567006
Distance nm 134,40 0,4032 134,8 bearing deg -147,08

Leg 4
Value Units No wind

Heading A to B (C:course) -147,08 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 45 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS -0,07860 deg
Av:convert deg to radians -0,00137 rad
sin(Aw)=sin(Av)*WS/TAS -0,00043
Aw (arcsin of previous result)-0,00043 rad
Aw:wind corr angle -0,02439 deg
Ac:angle WS to TAS 180,10299 deg
Ac:convert deg to radians 3,14339 rad
GS:ground speed(G) 190,00 knots 145,00
Flying time outbound 42,44261 min 55,61444 -13,17
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BVG - 7450370 150 %
Cruising speed 145

OUT 1000
Leg 1
Lat1/Long1 70,87 29,03
Lat2/Long2 72,79 32,75
Wind speed 50,00
Wind directiection 33,00
Initial heading 29,40
Average heading for leg 31,20
Time to fly 84,87

Leg 2
Lat2/Long2 72,79 32,75
Lat3/Long3 74,50 37,00
Wind speed 50,00
Wind directiection 33,00
Initial heading 32,93
Average heading for leg 34,80
Time to fly 79,06

IN
Leg 3
Lat3/Long3 74,50 37,00
Lat2/Long2 72,79 32,75
Wind speed 50,00
Wind directiection 33,00
Initial heading -142,99
Average heading for leg 214,80
Time to fly 38,53

Leg 4
Lat2/Long2 72,79 32,75
Lat1/Long1 70,87 29,03
Wind speed 50,00
Wind directiection 33,00
Initial heading -147,08
Average heading for leg 211,20
Time to fly 41,35

Round trip WIND mins hours NO WIND ∆ time
Leg 1 84,87 55,61 29,26
Leg 2 79,06 163,93 2,732 51,81 27,25
Leg 3 38,53 51,81 -13,28
Leg 4 41,35 79,89 1,331 55,61 -14,26
TOTAL 243,82 243,82 4,06 214,85 28,97



Calculations of head/tail wind situation for all four legs of the round trip 
Berlevåg to 74,5°N/37°E

Appendix A.9 page 34

Haversine formula Leg 1
Name dec radians
BVG Lat1 70,8708 1,2369288

Long1 29,0348 0,5067529
NR Border north Lat2 72,788729 1,270403

Long2 32,751556 0,5716225
Radius km 6371 y 0,0340559
Radius nm 3438 x 0,0191812
Lat1 1,2369288
Long1 0,50675286
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad 0,5129413
Distance nm 134,40 0,4032 134,8 bearing deg 29,39

Leg 1
Known variables Value Units No wind
Heading A to B (C:course) 31,20 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 50,00 knots
Wind direction (Wd) 33,00 deg

Calculated values Value Units
Av:angle WS to GS 178,20000 deg
Av:convert deg to radians 3,11018 rad
sin(Aw)=sin(Av)*WS/TAS 0,01083
Aw (arcsin of previous result) 0,01083 rad
Aw:wind corr angle 0,62060 deg
Ac:angle WS to TAS 1,17940 deg
Ac:convert deg to radians 0,02058 rad
GS:ground speed(G) 95,02 knots 145,00
Flying time outbound 84,87075 min 55,61444 29,26
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Haversine formula Leg 2
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 74,50 1,3002703

Long2 37,00 0,6457718
Radius km 6371 y 0,0305643
Radius nm 3438 x 0,0197974
Lat1 1,27040298
Long1 0,57162248
Lat2 1,30027029
Long2 0,64577182

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad 0,5747772
Distance nm 125,20 0,3756 125,6 bearing deg 32,93

Leg 2
Known variables Value Units No wind
Heading A to B (C:course) 34,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 50 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 181,80000 deg
Av:convert deg to radians 3,17301 rad
sin(Aw)=sin(Av)*WS/TAS -0,01083
Aw (arcsin of previous result)-0,01083 rad
Aw:wind corr angle -0,62060 deg
Ac:angle WS to TAS -1,17940 deg
Ac:convert deg to radians -0,02058 rad
GS:ground speed(G) 95,02 knots 145,00
Flying time outbound 79,06324 min 51,80887 27,25
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Haversine formula Leg 3
Name dec radians
BVG Lat1 74,50 1,3002703

Long1 37,00 0,6457718
NR Border north Lat2 72,79 1,270403

Long2 32,75 0,5716225
Radius km 6371 y -0,029079
Radius nm 3438 x -0,02192
Lat1 1,30027029
Long1 0,64577182
Lat2 1,27040298
Long2 0,57162248

Error 0,3%$+$0.3%
Distance km 232,004443 0,696 232,7 bearing rad -2,495656
Distance nm 125,20 0,3756 125,6 bearing deg -142,99

Leg 3
Known variables Value Units No wind
Heading A to B (C:course) 214,80 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 50 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS 361,80000 deg
Av:convert deg to radians 6,31460 rad
sin(Aw)=sin(Av)*WS/TAS 0,01083
Aw (arcsin of previous result) 0,01083 rad
Aw:wind corr angle 0,62060 deg
Ac:angle WS to TAS -182,42060 deg
Ac:convert deg to radians -3,18384 rad
GS:ground speed(G) 194,97 knots 145,00
Flying time outbound 38,53110 min 51,80887 -13,28
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Haversine formula Leg 4
Name dec radians
BVG Lat1 72,79 1,270403

Long1 32,75 0,5716225
NR Border north Lat2 70,87 1,2369288

Long2 29,03 0,5067529
Radius km 6371 y -0,03281
Radius nm 3438 x -0,021243
Lat1 1,27040298
Long1 0,57162248
Lat2 1,2369288
Long2 0,50675286

Error 0,3%$+$0.3%
Distance km 249,046076 0,7471 249,8 bearing rad -2,567006
Distance nm 134,40 0,4032 134,8 bearing deg -147,08

Leg 4
Value Units No wind

Heading A to B (C:course) -147,08 deg
TAS:true air speed(V) 145 knots
W:wind speed(WS) 50 knots
Wind direction (Wd) 33 deg

Calculated values Value Units
Av:angle WS to GS -0,07860 deg
Av:convert deg to radians -0,00137 rad
sin(Aw)=sin(Av)*WS/TAS -0,00047
Aw (arcsin of previous result)-0,00047 rad
Aw:wind corr angle -0,02710 deg
Ac:angle WS to TAS 180,10570 deg
Ac:convert deg to radians 3,14344 rad
GS:ground speed(G) 195,00 knots 145,00
Flying time outbound 41,35434 min 55,61444 -14,26
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