Deep water plume models -What's special about deep water

Øistein Johansen Senior scientist SINTEF Marine Environmental Technology

Deep water blowouts - knowledge basis

- Present knowledge based on
 - General work on specific deep water processes
 - Learnings from the DeepSpill experiment,
 - Observations from the Gulf of Mexico accident

Major terms

Buoyancy flux

increasing with gas flow rate and decreasing with depth due to compression

Entrainment

Ambient water is entrained into the plume. The entrainment rate increases with increasing plume rise velocity and plume radius

Separation height

- increasing with buoyancy flux and decreasing with strength of cross flow
- Depth of trapping
 - Increasing with buoyancy flux and decreasing with the density gradient

Buoyancy flux for an oil and gas blowout Oil rate 300 m³/h, GOR 300:1

The gas generates a buoyancy flux that drives the vertical rise of the plume

- The buoyancy flux B_H at a depth H depends on the gas volume flow V_Z at that depth: B_H = V_H g', where g' is the reduced gravity, practically equal to g = 9.8 m/s² for gas.
- For ideal gas and constant temperature: V_H = V₀ 10/(H + 10)

Blowouts in moderate to shallow waters

- When gas is leaking together with oil from a subsea blowout, gas bubbles will generate a buoyant plume that will entrain ambient water and lift it towards the sea surface.
- In moderate and shallow waters, surfacing of entrained water will cause a strong outward surface flow.
- The rising plume will carry oil droplets towards the surface. When the droplets settle to the surface in the outward flow, a thin slick will be formed, with thickness in the order of one tenth of a millimeter.

Separation of bubbles and droplets

Separation and fractionation (from Socolofsky and Adams 2002)

- When multi-phase plumes are bent over in cross-flow, gas bubbles and oil droplets may escape from the plume due to their individual buoyancy
- Separation is a self-reinforcing process as the deflecting effect of the cross current will increase when the buoyancy in the plume is reduced.
- This process may thus deprive the plume of all buoyancy at an early stage. As a result, plume rise will terminate, while the dispersed phase will rise to the sea surface.

Blowouts in deep waters

Picture of plume of oil and gas from the DeepSpill experiment.

In deep water, the gas in the blowout will be strongly compressed: at 1000 m depth the gas volume will be at least 100 times smaller relative to the gas volume at atmospheric pressure.

- Non-ideal gas behavior and gas dissolved in the oil may reduce the gas volume further
- This will cause a significant reduction in buoyancy, and the plume will be much weaker than in moderate water depths.

Surfacing of oil

Picture of crude oil slick from the DeepSpill experiment. Patches of emulsion appear brownish in color

- Trapping of the plume will also imply that the outward surface flow will vanish:
 - The formation of the surface slick will then to as large extent depend on the size distribution of the oil droplets: Small droplets will have significantly larger rise times than large droplets, and hit the surface more distant from the source.
 - For this reason, thicker patches of oil may be found on the surface, in some cases thick enough to emulsify.

Dissolution of gas from rising bubbles

- The long rise time will give time for dissolution of gas bubbles in ambient water
- Gas bubbles may dissolve completely before reaching the surface as shown by echo-sounder data from the DeepSpill experiment

Hydrate formation

- According to the hydrate equilibrium line for methane in sea water, hydrate may form below 600 m depth in the Gulf of Mexico
- However, the hydrate line is a necessary – but not sufficient condition for hydrate growth
 - Nucleation requires a certain super-cooling
 - Persistent growth requires gas saturated ambient water
- Present understanding
 - A thin hydrate shell may form on the surface of the bubbles, causing reduced dissolution loss by stabilizing the bubbles

Example calculation

- Oil and gas blowout in deep water in the Norwegian Sea
 - Oil rate 300 m³/h
 - Gas to oil ratio (GOR) 300:1
 - Water depth 840 m
 - Measured temperature and salinity profiles (summer)
 - Cross currents from 10 to 30 cm/s

Ambient data

Sea temperature and salinity profiles - Norwegian Sea

Deep Blow simulations

Computed plume rise – different assumptions

Oil and gas blowout Norwegian Sea 300 m³/h, GOR 300:1, 840 m depth

Computed plume trajectories

Distance downstream, m

Conclusions

- The depth is main factor that causes differences between deep water blowouts and blowouts in moderate to shallow water
 - Large depth implies stronger compression of the gas and a corresponding reduction in buoyancy flux, making the plume more sensitive to cross currents and stratification
 - The plume may for loose all buoyancy and be trapped at intermediate depths before reaching the surface
 - Oil droplets and gas bubbles will then continue towards the surface
 - The gas bubbles may dissolve before reaching the surface, but the surfacing oil droplets will form an oil slick
 - The appearance and thickness of surface slick will depend strongly on droplet size (small droplets will form a thin slick)

